首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesively bonded composite single lap joints were experimentally investigated to analyze the bondline stress concentrations and characterize the influence of adhesive ductility on the joint strength. Two epoxy paste adhesives—one with high tensile strength and low ductility, and the other with relatively low tensile strength and high ductility—were used to manufacture composite single lap joints. Quasi-static tensile tests were conducted on the single lap joints to failure at room temperature. High magnification two-dimensional digital image correlation was used to analyze strain distributions near the adhesive fillet regions. The failure mechanisms were examined using scanning electron microscopy to understand the effect of adhesive ductility on the joint strength. For a given surface treatment and laminate type, the results show that adhesive ductility significantly increases the joint strength by positively influencing stress distribution and failure mechanism near the overlap edges. Moreover, it is shown that high magnification two-dimensional digital image correlation can successfully be used to study the damage initiation phase in composite bonded joints.  相似文献   

2.
The RC99 committee of the Japan Society for Mechanical Engineers conducted the benchmark tests on strengths of adhesive joints using different testing methods. The effects of joint configuration, loading mode, adherend yield strength and so on, on the strength and data scatter were investigated using two typical epoxy adhesives. The strengths obtained by various tests were compared with each other. The relationships among strengths of butt, single lap and double lap joints and fracture toughness were given. Thirteen member institutes of the committee participated in this project. The benchmark results allow us to recognize that the joint strengths are strongly affected by the curing process. The key to obtaining the appropriate joint strength, is precise temperature control inside the adhesive layer for curing. Toughened adhesives do not always give higher joint strengths than untoughened adhesives. The yield strength of adherends much affects the observed lap joint strength of adhesives.  相似文献   

3.
One parameter that influences adhesively bonded joints performance is the adherend material and its effect should be taken into consideration in the design of adhesive joints. In this work, the effect of material on the mechanical behaviour of adhesive joints was investigated experimentally and numerically by single lap joints (SLJs) with different adherend materials (high strength steel, low strength steel and composite). The adhesives selected were two new modern tough structural adhesives used in the automotive industry. It was found that, for relatively short overlaps in SLJs bonded with structural modern tough adhesives, failure is dominated by adhesive global yielding and the influence of material on joint strength is not significant. For larger overlaps, the failure is not anymore due to global yielding and the effect of material becomes more important. Moreover, it was possible to evaluate which adhesive is more suited for each material.  相似文献   

4.
In the present work, the fatigue behavior of tongue and groove joints bonded by a toughened epoxy adhesive was investigated. Axial cyclic tests were performed by different design configuration conditions and the effects of design parameters were evaluated. The bonding strength of adhesives under fatigue loading is influenced by many factors such as, the length of bondline, adhesive thickness, traverse pre-stress on near the free edges of bond line and material of the joining parts. Since all these factors affect the fatigue strength of the adhesively joined parts, the effects of these parameters need to be investigated. The present paper describes the use of the stochastic search process that is the basis of a Genetic Algorithm, in developing fatigue strength estimation of adhesively bonded thick woven E-glass/vinyl ester laminates. Non-linear estimation models were developed using genetic algorithm. Developed models are validated with experimental data. Genetic Algorithm Fatigue Strength Estimation Model for Tongue and Groove Joints was developed to estimate the fatigue strength of the adhesively bonded joint. The strongest adhesively bonded joints can be achieved by selecting optimum design parameters obtained from the models. The logarithmic number of cycles was increased 2.46 times by selecting aluminum EN AW 5083 insert instead of composite insert materials. The joint fatigue strength was significantly improved by selecting appropriate design parameter values.  相似文献   

5.
An ideal adhesive lap joint is one in which the adhesive flexibility and strength properties vary along the overlap length. Because of greater adhesive shear strains at the edges of the overlap, a ductile and flexible adhesive should be used at the overlap ends, while in the middle a stiff and less-ductile adhesive should be used. This technique has been investigated in the past but only a few studies have reported any experimental evidence. In the present study, single-lap adhesive joints were manufactured and tested maintaining the same brittle adhesive in the middle of the overlap and using three different ductile adhesives of increasing ductility at the ends of the overlap. A simple joint strength prediction is proposed for mixed-adhesive joints. The mixed-adhesive technique gives joint strength improvements in relation to a brittle adhesive alone in all cases. For a mixed adhesive joint to be stronger than the brittle adhesive and the ductile adhesive used individually, the load carried by the brittle adhesive must be higher than that carried by the ductile adhesive.  相似文献   

6.
The objective of the present study was to better understand the effect of the change in the geometry of the adherend corners on the stress distribution in single lap joints and, therefore, on the joint strength. Various degrees of rounding were studied and two different types of adhesives were used: one very brittle and another which had a large plastic deformation. Experimental results on the strength of joints with different degrees of rounding are presented. For joints bonded with brittle adhesives, the effect of the rounded adherend corners is larger than that with ductile adhesives. The strength of joints with brittle adhesives with a large radius adherend corner increases by about 40% compared to that with a sharp adherend corner. It is shown that for joints bonded with brittle adhesives, crack propagation occurs for a short period before it grows into catastrophic failure. However, for ductile adhesives, there is large adhesive yielding and small crack propagation before final failure. Another important feature of joints bonded with ductile adhesives is that there may be more than one crack in the adhesive layer before failure. This makes strength predictions more difficult. The second part of the paper presents an approximate method for predicting the strength of joints bonded with brittle and ductile adhesives, with and without adherend corner rounding. The predictions, based on an average value around the singularity, compare well with the experimental results, especially for joints bonded with ductile adhesives.  相似文献   

7.
Adhesive bonding of components has become more efficient in recent years due to the developments in adhesive technology, which has resulted in higher peel and shear strengths, and also in allowable ductility up to failure. As a result, fastening and riveting methods are being progressively replaced by adhesive bonding, allowing a big step towards stronger and lighter unions. However, single-lap bonded joints still generate substantial peel and shear stress concentrations at the overlap edges that can be harmful to the structure, especially when using brittle adhesives that do not allow plasticization in these regions. In this work, a numerical and experimental study is performed to evaluate the feasibility of bending the adherends at the ends of the overlap for the strength improvement of single-lap aluminium joints bonded with a brittle and a ductile adhesive. Different combinations of joint eccentricity were tested, including absence of eccentricity, allowing the optimization of the joint. A Finite Element stress and failure analysis in ABAQUS® was also carried out to provide a better understanding of the bent configuration. Results showed a major advantage of using the proposed modification for the brittle adhesive, but the joints with the ductile adhesive were not much affected by the bending technique.  相似文献   

8.
Generally, all failures in adhesively-bonded joints begin at the overlap ends because of the stress concentration occurring at the ends. The approach which reduces stress concentration at the overlap ends increases the load capacity and delays the failure. The lower the stiffness of the adhesive used, the lower the stress concentration, and the lower stress concentration gives rise to higher joint strength. In this work, the results of the application of two adhesives, one stiff and one flexible, with very different mechanical behaviors along the overlap length in double strap joints subjected to bending moment, were analyzed. A stiff adhesive was applied in the middle portion of overlap, while a flexible adhesive was applied towards the edges. The results show that the bi-adhesively-bonded joints carry more loads and have higher strength when compared with single-adhesively-bonded joints.  相似文献   

9.
The increased use of adhesives for joining structural parts demands a thorough understanding of their load carrying capacity. The strength of the adhesive joints depends on several factors such as the joint geometry, adhesive type, adherend properties and also on the loading conditions. Particularly polymer based adhesives exhibit sensitivity to loading rate and therefore it is important to understand their behavior under impact like situations. The effect of similar versus dissimilar adherends on the dynamic strength of adhesive lap joints is addressed in this study. The dynamic strength is evaluated using the split-cylinder lap joint geometry in a split Hopkinson pressure bar setup. The commercial adhesive Araldite 2014 is used for preparing the joints. The adherend materials considered included steel and aluminum. The results of the study indicated that the dynamic strength of the lap joint is influenced by the adherend material and also by the adherent combination. Even in the case of joints with similar adherends, the strength was affected by the adherend type. The strength of steel–steel joints was higher than that for aluminum–aluminum joints. In the case of dissimilar adherends, the strength was lower than that of the case of similar adherends. The results of this study indicate that the combination of adherend material should also be accounted for while designing lap joints.  相似文献   

10.
Adhesively bonded joints are widely used in a variety of industrial and engineering activities. Their overall strength is dependent on the properties of the adhesives. In the present research, assessments of adhesive properties were performed systematically through defining both strength mixity and energy rate mixity and using them to characterize the overall strength of metallic single lap joints. By means of the cohesive zone model, the adhesive strength mixity was defined as the ratio of the shear and tensile separation strength, and the energy rate mixity was defined as the ratio of the area below the shear cohesive curve and the area below the tensile cohesive curve. For each specified group of mixity parameters, corresponding to the properties of a specified adhesive, the overall strengths and the critical displacements of bonded joints were characterized. A series of strength and energy rate mixities were taken into account in the present calculations. A comparison of the present calculations with some existing experiments was carried out for both brittle and ductile adhesives. Finally, in the calculations presented here, damage initiation and evolution of the adhesive layer were also undertaken. The results showed that the overall strength of the joints was significantly depended on the adhesive properties, which were characterized by the strength and energy rate mixities of the adhesive. Furthermore, the shear adhesive stress components played a dominate role in both the damage initiation and evolution in the adhesives, which were also affected by the overlap length of the joints.  相似文献   

11.
Composites have been used extensively in various engineering applications including automotive, aerospace, and building industries. Hybrid composites made from two or more different reinforcements show enhanced mechanical properties required for advanced engineering applications. Several issues in composites were resolved during the last few years through the development of new materials, new methods and models for hybrid joints. Many components in automobile are joined together either by permanent or temporary fastener such as rivets, welding joint and adhesively bonded joints. Increasing use of bonded structures is envisaged for reducing fastener count and riveted joints and there by drastically reducing assembly cost. Adhesive bonding has been applied successfully in many technologies. In this paper, scientific work on adhesively bonded composites and hybrid composites are reviewed and discussed. Several parameters such as surface treatment, joint configuration, material properties, geometric parameters, failure modes, etc. that affect the performance of adhesive bonded joints are discussed. Environmental factors like pre-bond moisture and temperature, method of adhesive application are also cited in detail. A specific case of adhesive joints in hybrid bonded-bolted joints is elaborated. As new applications are expanding in the field of composites joining and adhesive joints, it is imperative to use information on multiple adhesives and their behaviour in different environmental conditions to develop improved adhesive joint structure in mechanical applications.  相似文献   

12.
The optimized bonding of glued finger joints is required for structural and nonstructural applications. The use of nonspecific adhesives, combined with the joint geometry and exposure of joints to humidity and temperature, are factors that can compromise the durability of glued joints. The main objective of this study is the development of cross-linking poly(vinyl acetate) (PVAc) hybrid adhesive to produce nonstructural finger joints of Pinus elliottii with finger lengths of 6.5 and 4.5 mm. The adhesives were produced by emulsion copolymerization of vinyl acetate with n-butyl acrylate with different amounts of N-methylol acrylamide and blended with resorcinol-formaldehyde resin (RF) and aluminum chloride (AlCl3). The rheological behavior of adhesives was investigated. We found that the joint configuration and the exposition time employed influenced joint strength. The PVAc/RF adhesive showed a thicker bond line and consequent deeper penetration into the pores of the wood as verified by microscopy analysis. Statistically differences in bond strength of the adhesive joints were found with respect to different conditioning times and finger length. The highest values were exhibited by the joints produced with a finger length of 6.5 mm and glued with the hybrid adhesive (AD-4) than that joints produced with a finger length of 4.5 mm.  相似文献   

13.
A mechanical test method for the studies of high-temperature anaerobic adhesives has been established, based on fracture mechanics, by modifying the standard test method of collar and pin test. Linear Elastic Fracture Mechanics approach was applied to the establishment of the relationship between adhesive fracture surface energy “R”, fracture load and crack length. Hence, from the joints containing a given artificial flaw the adhesive fracture surface energy can be determined; alternatively, from the strength of the joints without artificial flaws the inherent flaw size “ai” can be calculated to account for the decrease of joint strength.

The experimental techniques were applied to examine the mechanical behaviour of the joint system based on high temperature anaerobic adhesives. It was found that the joints cured at room-temperature had higher adhesive fracture surface energy but lower joint strength than the joints postcured at high temperatures. The “ai” data explained this interesting phenomenon. The joints cured at room-temperature had extraordinarily large “ai”, which was found to be formed by the uncured adhesive near the edges of the joints and the adhesive further cured in the postcure processes to reduce the “ai”. Also, the growth of intrinsic flaw was found to be responsible for the deterioration of the joints in a short-term, high-temperature ageing process.  相似文献   

14.
This paper presents the results of research undertaken to determine the possibility of improving the fatigue properties of peel-loaded adhesive joints by dispersing multiwall carbon nanotubes (MWCNTs) into epoxy-based adhesives. The fatigue strength tests were carried out on an electromagnetic inductor with the resonance frequency of the adhesively bonded joint specimen. The tests were conducted for three types of epoxy adhesives whose properties were modified through the introduction of multiwalled carbon nanotubes, into their structure. Carbon nanotubes were synthesized by means of the Chemical Vapour Deposition (CVD) method with Fe-Co catalysts. A quantity of 1 wt.% of the dried material was dispersed into the epoxy adhesives. The results of the fatigue strength tests revealed a significant improvement of the fatigue lifetime of adhesive joints due to MWCNT introduction as filler for epoxy adhesives. In the case of the Epidian 57/PAC adhesive composition, a more than twofold increase in the fatigue lifetime was obtained (an increase of 106.8%). For the Bison Epoxy adhesive composition, the fatigue lifetime increased by 69.3%. The fatigue strength for the best result increased by about 13%.  相似文献   

15.
This paper outlines an experimental study on the shear behaviour of structural silicone adhesively bonded steel-glass orthogonal lap joints. In the combination of steel plate and glass panel to form a hybrid structural glazing system, bonded joints with structural silicones can provide certain flexibility which relieves stress peaks at critical points of glass panel. The cohesive failure and its related fracture pattern of test joints with varied geometries of adhesives are examined experimentally. It is shown that the presence of two failure modes as discrete voids and macro cracks is closely related to the adhesive thickness. The effects of geometric parameters of adhesives on the joint shear strength are examined. It is demonstrated that the joint shear strengths are increased with increased individual overlap length, reduced adhesive thickness or increased adhesive width while the shear deformation corresponding to maximum shear force is mostly influenced by adhesive thickness. Mechanical contributions for those effects are analyzed accordingly. Finally, an analytical formula allowing for the equilibrium of strain and force on the adhesive and adherend is proposed for the analysis of shear strength. It is demonstrated that calculated normalized shear force ratios predicted by proposed formula agree well with those from experimental results.  相似文献   

16.
Employing mixed adhesive joints has been proven to be very useful. This type of joint leads to improved performance by increasing strength and decreasing stresses in critical areas of the joint. In the same way, the use of the Intensity of Singular Stress Field (ISSF) has been shown to be suitable for adhesive joint calculation, since the adhesive strength can be controlled by the ISSF at the interface end. Four finite element models have been created by combining two epoxy adhesives with different mechanical properties, and therefore with different Young's moduli. New mixed adhesive joints have been compared with respect to only-one adhesive joints in terms of the ISSF. The results show a clear improvement with one of the configurations of mixed adhesive joints. A significant decrease of 35.64% in the ISSF is obtained compared to the only-one adhesive configuration.  相似文献   

17.
The effects of the presence and size of gaps in the band single lap joint geometry were studied. Two types of adhesives: a deformable, acrylic tape and epoxy putty were used as model adhesives. When using the epoxy putty, the substrate overlap end conditions were also varied by machining 10° end tapers in some joints. For both adhesive types, the introduction of the gap had a moderate negative effect on the load carrying characteristics of the joint, but joints utilizing the epoxy putty maintained joint strength as the gap size was increased to 9.53 mm (38% gap), while the highly deformable acrylic tape case displayed a constant decline and maintaining constant ultimate shear stress values. We suspect that this variation is due to a combination of the different failure modes of each adhesive and their differing moduli, as well as how these relate to the peeling stresses at the ends of the bond length. In the epoxy putty series, the samples with tapered substrates consistently carried higher loads than those with unmodified substrates. This improvement is a manifestation of the ability of the tapered joint geometry to reduce peeling stresses experienced within the adhesive layer.  相似文献   

18.
An experimental study was conducted on the strength of adhesively bonded steel joints, prepared epoxy and acrylic adhesives. At first, to obtain strength characteristics of these adhesives under uniform stress distributions in the adhesive layer, tensile tests for butt, scarf and torsional test for butt joints with thin-wall tube were conducted. Based on the above strength data, the fracture envelope in the normal stress-shear stress plane for the acrylic adhesive was compared with that for the epoxy adhesive. Furthermore, for the epoxy and acrylic adhesives, the effect of stress triaxiality parameter on the failure stress was also investigated. From those comparison, it was found that the effect of stress tri-axiality in the adhesive layer on the joint strength with the epoxy adhesive differed from that with the acrylic adhesive. Fracture toughness tests were then conducted under mode l loading using double cantilever beam (DCB) specimens with the epoxy and acrylic adhesives. The results of the fracture toughness tests revealed continuous crack propagation for the acrylic adhesive, whereas stick-slip type propagation for the epoxy one. Finally, lap shear tests were conducted using lap joints bonded by the epoxy and acrylic adhesives with several lap lengths. The results of the lap shear tests indicated that the shear strength with the epoxy adhesive rapidly decreases with increasing lap length, whereas the shear strength with the acrylic adhesive decreases gently with increasing the lap length.  相似文献   

19.
Structural applications of adhesive bonding have been increasing in recent years due to improvements in the types of adhesives available and in improved knowledge of bonding procedures. Consequently, there exists a demand for techniques to assess adhesive joint strength, particularly along bondline interfaces where compliant adhesives contact more rigid metallic surfaces. The present study investigates the mixed-mode response of cracked-lap-shear (CLS) joints bonded with unprimed and electroprimed steel adherend surfaces. Three bondline thicknesses, representative of structural automotive joints, were evaluated for unprimed and primed bondlines. Experimental results for static load versus debond extension were input to finite element analyses for computing debond parameters (strain energy release rates). The debonds always initiated at a through-the-thickness location that had the greatest peel component of strain energy release rate. The total strain energy release rate values correlated well with trends in joint strength as a function of bondline thickness.  相似文献   

20.
Bi-adhesive joints are an alternative stress-reduction technique for adhesively bonded joints. The joints have two types of adhesives in the overlap region. The stiff adhesive should be located in the middle and the flexible adhesive at the ends. This study is the extension of our previous paper to the von Mises stress evaluation and discusses the values and importance of the von Mises stresses in the bi-adhesive single-lap joint. Both analytical and numerical analyses were performed using three different bi-adhesive bondline configurations. The Zhao’s closed form (analytic) solution used includes the bending moment effect. In the finite element models, overlap surfaces of the adherends and the adhesives were modeled using surface-to-surface contact elements. The contribution levels of the peel and shear stresses for producing a peak von Mises stress are also studied. It is concluded that the contribution level of the shear stress at where von Mises stress becomes peak is more than that of the peel stress. Joint strength analyses were performed based on the peak elastic von Mises stresses. It is seen that joint strength can be increased using bi-adhesive bondline. The analytical and numerical results show that the appropriate bond-length ratio must be used to obtain high joint strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号