首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most adhesively bonded joints exhibit adhesive or cohesive failure, i.e. failure at the adhesive/adherend interface or within the adhesive, respectively. The main objective of this study is to investigate the effect of surface modification of the metal substrate accompanied by modification of the adhesive properties on the strength and failure mechanism of bonded joints. A 5061 aluminium alloy has been used as the metal substrate onto which two types of surface treatments were applied; chemical surface modification and gritblasting. A standard epoxy resin was used as the adhesive medium, in which multi-wall carbon nanotubes (MWCNTs) were dispersed, with a range of weight fraction content (from 0.03% to 0.5%). The resin was fully characterised by mechanical testing in order to determine the optimum weight fraction to enhance its properties. Aluminium to aluminium and glass fibre reinforced polymer (GFRP) composite to aluminium single lap joints bonded with either pure epoxy resin or MWCNT reinforced epoxy resin were subsequently manufactured and tested. The tests show a moderate increase of the joint strength when MWCNTs are added into the adhesive with the failure mechanism changing from cohesive to adhesive. In addition, the comparison between different surface preparation methods shows that gritblasting results in considerably improved adhesive strength over chemical treatment.  相似文献   

2.
This work deals with an experimental investigation on the effect of mechanical surface treatments of adhesive bonded joints. The behaviour of an adhesively bonded joint can be considered good if cohesive failure is achieved, while when interfacial failure occurs the performances are normally much worse. A key parameter which drives the failure type is the surface treatment applied to the adherends. This work analyzes, by means of a structured experimental campaign, which surface mechanical treatment gives the best performance. The design of the experimental approach used involves different materials, joint geometries, and surface treatments. The results are investigated in terms of force, energy, and stresses in the joints and the performance of the several mechanical treatments tested is assessed, showing that a simple correlation with the surface roughness is not sufficient to predict the best joint performances. The reliable results obtained prove that sandpapering or sandblasting the adherends gives a strong improvement in terms of performance and leads to a higher probability of cohesive failure.  相似文献   

3.
The mechanical behaviour of bonded composite joints depends on several factors, such as the strength of the composite–adhesive interface, the strength of the adhesive and the strength of the composite itself. In this regard, a finite element model was developed using a combined interface–adhesive damage approach. A cohesive zone model is used to represent the composite–adhesive interface and a continuum damage model for the adhesive bondline. The influence of the composite–adhesive interfacial adhesion and the strength of the adhesive on the performance of a bonded composite single-lap joint was investigated numerically. A Taguchi analysis was conducted to rank the influence of material parameters on the static behaviour of the joint. It was found that the composite–adhesive interfacial fracture energy and the mechanical properties of the adhesive predominantly govern the static performance of the joints. A parametric study was performed by varying the most important material parameters, and a response surface equation is proposed to predict the joint strength. It is shown that the influence of experimental parameter variations, e.g. variation in adhesive curing and surface preparation conditions, can be numerically accommodated to investigate the static behaviour of bonded composite joints by combining finite element and statistical techniques. The methods presented could be used by practicing engineers to describe the failure envelope of adhesively bonded composite joints.  相似文献   

4.
The peel strength of aluminium-aluminium joints bonded by an adhesive based on carboxylated nitrile rubber and chlorobutyl rubber was found to depend on surface topography and use of a silane primer. Anodization causes a marginal increase in bond strength while the silane primer improves the adhesive joint strength remarkably.

The peel strength was also found to be dependent on test conditions (test rate and temperature). The threshold peel strength value obtained by measurements at low peel rate and high test temperature was found to depend on the type of failure during peeling (cohesive or interfacial) which, in turn, is controlled by the presence of silica filler in the adhesive. Two different threshold values of peel strength were obtained: 60 N/m for interfacial failure (in silica-filled adhesive), 140 N/m for cohesive failure (in unfilled adhesive).  相似文献   

5.
采用芳纶纤维复合材料与钛合金制备单搭接胶接连接实验件。利用万能实验机、DIC、应变采集系统等手段,对胶接接头的极限载荷、应变场、应变分布和破坏模式进行表征,分析了拉伸载荷下胶接接头的应变分布规律和复合材料层合板刚度折减规律,探究了异质材料单搭接胶接接头的破坏过程。结果表明,胶接接头破坏模式为搭接接头两端胶层界面破坏,中间部位复合材料层间破坏。接头破坏过程为渐进破坏,受载时复合材料端头产生较大的剪切应变,裂纹在此处萌生,并不断向钛合金端头扩展,扩展部位复合材料层合板刚度不断折减,直到搭接面积过小胶层突然发生界面破坏。  相似文献   

6.
Abstract

Adhesion is a surface phenomenon occurring in many processes, e.g., bonding, painting or varnishing. Knowing the adhesion properties is critical for evaluating the usability or behaviour of materials during these processes. Good adhesion properties favour the processes of bonding, resulting in high strength of adhesive joints. Adhesive bonded joints are used in many industries, and the subject of this study was 7075 aluminium alloy sheet bonded joints as typically used in the aviation or construction industry. Surface free energy (SFE) can be used to determine the adhesion properties of the materials. The SFE of the tested sheets was determined with the Owens–Wendt method, which consists in determining the dispersion and polar components of SFE. The purpose of this work was to correlate the bonded joint strength of selected aluminium alloy sheets to the surface free energy of the sheets that had been subjected to degreasing only and no other prior treatment was used. Single-lap bonded joints of 7075 aluminium alloy sheets were tested. Higher joint strength was measured for the thinner sheets, while the lowest strength was measured for the thickest sheets. This suggests that the thickness of the joined parts is an important factor in the strength of bonded joints. The comparison of adhesion properties to the strength of adhesive joints of tested materials shows that there is no direct relation between good adhesion properties (i.e., high SFE) and joint strength. As for degreasing, the highest joint strength was observed for aluminium alloy sheets with the lowest SFE; the sheets which were not degreased gave the highest SFE and highest joint strength.  相似文献   

7.
Single metallic adherend-adhesive bonded specimens are subjected to a three point flexure test in order to investigate the effects of adherend surface conditioning and adhesive curing conditions on the mechanical properties of the substrate-adhesive interfacial region. The main advantage of this test over more conventional ones (i.e. peel, tensile, shear tests) is to induce stress concentration which is responsible for a failure locus within the interfacial region and consequently its ability to provide data representative of practical adhesion in an adhering system. The results obtained are shown to be independent of adherend thickness, adhesive layer thickness, width of the bonded area and displacement speed used during testing. Data presented here are relative to Ti-6Al-4V titanium alloy/epoxy systems. They demonstrate the high sensitivity of the flexure test to the effects of prebonding treatments (chemical etching, anodization) and of adhesive curing conditions on practical adhesion.  相似文献   

8.
The forces between adhesive and adherend mainly influenced by the pre-treatment technology of the substrates have important effects on the bonding strength. In this paper, the influence of different pre-treatment processes and surface roughness on the tensile-shear strength of 2060 Al–Li alloy adhesive joints as well as related mechanism was investigated. In this perspective, substrates were processed by mechanical abrasion at different levels and by phosphoric acid anodizing, which resulted in different surface topographies that were characterized by means of roughness measurements. Single-lap joints were prepared using a two-component epoxy adhesive. The tensile-shear strength of joints was measured via destructive testing and the failure modes were analyzed to evaluate the quality of bonding. Results showed that with the increase of surface roughness of Al–Li alloy, the tensile-shear strength of the adhesive joints increased and the failure modes changed from interfacial failure to cohesive failure. The groove structures formed during mechanical abrading were regarded as being responsible for this strengthening behavior. Moreover, a rough porous membrane was produced on adherents’ surface by phosphoric acid anodizing, causing a consolidation of adhesion at the adhesive-substrate interface.  相似文献   

9.
This paper reports on an investigation of glued joints in glass load-bearing structures, with reference to the effect of various substrates (glass, steel, stainless steel, aluminium) and their surface treatment (sandblasting for the glass surface) on the adhesion of selected adhesives. The thickness of the adhesive layer and the effect of artificial ageing – a simulation of 5 years of ageing in outdoor central-European conditions – are also discussed. Tensile and shear tests were carried out on three series of specimens with various adhesives and substrates – two series for tensile and shear tests, and one series for shear tests on specimens exposed to ageing. Our results show that sandblasting the glass surface can improve the adhesion, and thus the strength values, of an adhesive joint in cases where, with a smooth glass surface, cohesive failure is not reached. The thickness of the adhesive layer had a significant effect for a semi-rigid acrylate adhesive, where the joint achieved higher strength values with less thickness of the glue. The effect of ageing varied according to the adhesive. The most visible changes were observed for a two-component acrylate adhesive and for methacrylate UV-adhesives. One of the selected glues was marked as unsuitable for load-bearing connections due to significant worsening of its mechanical properties after ageing.  相似文献   

10.
Durability of adhesively-bonded aluminum joints was investigated by measuring the joint strength using the single-lap shear test before and after exposure to distilled water and seawater. Fractured specimens were examined by photography and scanning electron microscopy to determine the failure modes. Addition of Al particles as much as 50 wt% did not cause any significant decrease in adhesive joint strength. Moreover, varying the Al filler content in the adhesive did not have a significant effect on adhesive behavior in either of the two environments studied. The unexposed adhesive joints failed almost completely in a cohesive (in the adhesive) failure mode. Some decrease in strength was observed in adhesive joints after exposure to both distilled water and seawater for 6 months. The decrease in adhesive joint strength was more significant for specimens immersed in distilled water than those immersed in seawater, probably due to the higher amount of moisture in the adhesive in distilled water than in seawater, as observed in a related moisture diffusion study. The joints exposed to distilled water or sea water failed in more than one mode. The interior part of the adhesive lap area failed in a cohesive mode while an adhesion failure mode was observed near the edges of the adhesive lap area, which is believed to be a result of moisture diffusion through the edges.  相似文献   

11.
Four ethylene vinyl acetate (EVA) co-polymers with different vinyl acetate (VA) contents (9–20 wt%) were treated with corona discharge to improve their adhesion to polychloroprene (PCP) adhesive. The thermal properties of the EVAs decreased as their VA content increased, caused by a decrease in crystallinity. The elastic and viscous moduli of the EVAs decreased and the temperature and modulus at the cross-over between these moduli decreased with increasing VA content. Contact-angle measurements (water), infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyse the surface modifications produced in the corona-discharge-treated EVAs. The corona discharge treatment produced improved wettability and created roughness and oxygen moieties on the EVA surfaces. The higher the VA content and the higher the corona energy, the more significant modifications were produced on the EVA surface. The VA content also affected the T-peel strength values of treated EVA/polychloroprene + isocyanate adhesive joints, as the values increased with increasing VA content. Mixed failure modes (interfacial + cohesive failure in the EVA) were obtained in the adhesive joints produced with corona discharge treated EVAs containing more than 9 wt% VA. The accelerated ageing of the joints did not affect the T-peel strength values, but the locus of failure in most cases became fully cohesive in the EVA, likely due to the higher extent of curing of the adhesive.  相似文献   

12.
Adhesively bonded joints can support a longer fatigue life if compared to conventional joining techniques, provided that a set of requirements is fulfilled. One of the most important requirements is the mechanical preparation of the bonded joint surface, which improves the joint interface adhesion. The aim of this work is to investigate the influence of surface roughness of mild steel substrates on fatigue behavior in adhesive bonded plates. To accomplish this objective, three different surface treatments were used on A36 steel substrate specimens, namely sand blasting, grit blasting, and bristle blasting. Bonded plate specimens, using end-notched flexure format, with a thin adhesive epoxy layer were manufactured and tested, under mode II loading condition, in both static and dynamic tests. The results confirm the importance of surface treatment of the substrate on the fatigue life, confirming that adhesively bonded joints have significant performance differences when subjected to static and dynamic loadings.  相似文献   

13.
In this study, the shear strengths of Al 7075–HSS adhesive bonded, grooved and smooth plates were investigated. The proven toughness and durability of adhesives have drawn the attention of researchers who want to take advantage of the technology to benefit the development of ballistic resistance sandwich panels. However, the strength of the panel depends on the design of surface topography. Therefore, it is essential to understand the fracture upon loading parallel to the plane of the adhesive bonded metal plates. In this experiment, toughened epoxy was used to bond dissimilar metal plates at 1 mm thickness. The shear tests were performed with a universal-testing machine to identify the maximum fracture loads. The results showed that a shear lap joint specimen with a grooved surface yields a higher strength than a smooth specimen. From the fracture behaviour of all specimens, interfacial failure with some degree of cohesive failure was observed. This indicates that the strength of the adhesive-bonded metal plate driven by a mechanical interlocking effect and mode of failure for thick bondline was the result of interfacial strength rather than adhesive bulk strength. Shear value results and fractography for 1 mm bond thickness provide insights towards steel fibre application in epoxy.  相似文献   

14.
The influences of various Al surface treatments, adhesive thicknesses as well as the incorporation of synthesized microcapsules into epoxy adhesive on the shear strength of adhesive/ Al joints have been investigated using lap-shear tensile tests. First, the influence of adhesive thickness on the shear strength of joints has been presented. Then, the effects of various Al surface treatments on the surface roughness of Al and shear strength of joint have been researched. Atomic force microscopy was used to study the Al surface morphologies and textures. Finally the few micron-sized polymeric microcapsules were synthesized and the shear performances of microcapsule filled epoxy adhesives were inspected. It was observed that the HCl acid based etching increased both micro-roughness and nano-texture of the Al surface and led to the peak shear strength. Moreover, HCl-nitric acid treatment offered the maximum value for the cohesive failure. Capsule inclusions into the adhesive displayed different influences on the joint shear performances depending on the capsule morphology and the surface treatment of Al.  相似文献   

15.
The impact tensile strength of structural adhesive butt joints was determined with a modified split Hopkinson pressure bar using hat-shaped specimens. A typical two-part structural epoxy adhesive (Scotch weld® DP-460) and two different adherend materials (Al alloy 7075-T6 and commercially pure titanium) were used in the adhesion tests. The impact tensile strength of adhesive butt joints with similar adherends was evaluated from the peak value of the applied tensile stress history. The corresponding static tensile strengths were measured on an Instron testing machine using joint specimens of the same geometry as those used in the impact tests. An axisymmetric finite element analysis was performed to investigate the static elastic stress distributions in the adhesive layer of the joint specimens. The effects of loading rate, adherend material and adhesive thickness on the joint tensile strength were examined. The joint tensile strength was clearly observed to increase with the loading rate up to an order of 106 MPa/s, and decrease gradually with the adhesive thickness up to nearly 180 μm, depending on the adherend materials used. The loading rate dependence of the tensile strength was herein discussed in terms of the dominant failure modes in the joint specimens after static and impact testing.  相似文献   

16.
This paper presents an approach to predicting the strength of joints bonded by structural adhesives using a finite element method. The material properties of a commercial structural adhesive and the strength of single-lap joints and scarf joints of aluminum bonded by this adhesive were experimentally measured to provide input for and comparison with the finite element model. Criteria based on maximum strain and stress were used to characterize the cohesive failure within the adhesive and adherend failure observed in this study. In addition to its simplicity, the approach described in this paper is capable of analyzing the entire deformation and failure process of adhesive joints in which different fracture modes may dominate and both adhesive and adherends may undergo inelastic deformation. It was shown that the finite element predictions of the joint strength generally agreed well with the experimental measurements.  相似文献   

17.
The effects of primer and annealing treatments on the shear strength between anodized Ti6Al4V and epoxy were investigated. Primer coating improved the shear strength between anodized Ti alloy and epoxy by up to 81.3% using concurrent curing compared with that of control specimens. After annealing of anodized Ti alloy and applying primer, the shear strength of the specimen was further increased by 6.4% due to the formation of stable TiO2 transferred from TiO in the anodization process. SEM analysis revealed the specimen without primer and annealing treatments showed adhesive failure between epoxy–alloy interface and discontinuous cohesive failure of epoxy. Primer coating initiated a new interfacial failure mode between the oxide layer and alloy due to the improved bonding strength between epoxy and oxide layer. In addition, annealing and primer treatments generated large tracts of epoxy continuous cohesive failure, showing good agreement with its higher shear strength and work of fracture.  相似文献   

18.
Adhesively bonded composite single lap joints were experimentally investigated to analyze the bondline stress concentrations and characterize the influence of adhesive ductility on the joint strength. Two epoxy paste adhesives—one with high tensile strength and low ductility, and the other with relatively low tensile strength and high ductility—were used to manufacture composite single lap joints. Quasi-static tensile tests were conducted on the single lap joints to failure at room temperature. High magnification two-dimensional digital image correlation was used to analyze strain distributions near the adhesive fillet regions. The failure mechanisms were examined using scanning electron microscopy to understand the effect of adhesive ductility on the joint strength. For a given surface treatment and laminate type, the results show that adhesive ductility significantly increases the joint strength by positively influencing stress distribution and failure mechanism near the overlap edges. Moreover, it is shown that high magnification two-dimensional digital image correlation can successfully be used to study the damage initiation phase in composite bonded joints.  相似文献   

19.
The use of adhesive is posed to increase dramatically for application to the next generation of vehicle structures as is the use of aluminum. In this study, the effect of adhesive characteristics on the strength of adhesive-bonded lap shear aluminum was investigated. It was found that the joint strength depended on not only the adhesive properties but the bond adhesion between the adhesive and adherend. For the given selected aluminum substrates, to ensure the cohesive failure mode and consistent joint strength it is necessary to select an adhesive which had a weaker than or comparable strength to the bond adhesion. To improve the failure mode from adhesive to cohesive, atmospheric pressure plasma surface treatment of X610-T4PD and X626-T4P aluminum was performed and results showed that it improved not only the joint strength but degree of cohesive failure mode.  相似文献   

20.
A serious limitation frequently encountered in the use of structural adhesives is the deleterious effect moisture has upon the strength of a bonded component, especially when the component is also subjected to conditions of relatively high stress and temperature. It is generally recognised that while the locus of failure of well prepared joints is invariably by cohesive fracture in the adhesive layer, after environmental attack it is via failure in the interfacial regions. This interfacial locus of failure focuses attention on interfacial fracture mechanical considerations. This paper reviews mechanisms of environmental failure and considers techniques for estimating and increasing the service-lifetimes of bonded components. Particular emphasis is given to the contribution from the application of continuum fracture mechanics concepts to the study of environmental attack on structural adhesive joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号