首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial properties between fibers and the matrix contribute to the overall properties in high performance composites. Plasma treatments (Ar, O2, CF4/O2, N2/H2) have been performed on carbon fibers to improve the fiber-matrix interaction. The treatment efficiency was checked by the single-fiber technique, while the surface chemistry and morphology were characterized by X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), and scanning electron microscopy (SEM). The O2- and N2/H2-plasma treatments proved most effective both for introducing oxygen-containing functionalities at the fiber surface and for improving the interfacial shear strength of carbon fiber/epoxy composites. A relationship between the oxygen concentration at the fiber surface and the interfacial shear strength is demonstrated.  相似文献   

2.
For preparing the good magnetism properties of rubber, NBR/Fe3O4 composites are prepared. In the experiment, the surface microstructure of NBR/Fe3O4 and distribution of nano-Fe3O4 particles are analyzed. The results showed that after the addition of nano-Fe3O4, the surface microstructure of NBR/Fe3O4 is greatly improved. The interface bonding of nano-Fe3O4 and NBR are close-knit. With adding different mass fractions of nanoparticles, the maximum elongation 300% stress at definite elongation and the tensile strength of composites are decreased, but the shore A hardness of composites is improved. The magnetic property of composites can only rely on mass fraction of nano-Fe3O4, while uncorrelated to the degree of scatter of nano-Fe3O4.  相似文献   

3.
Magnetite (Fe3O4) nanoparticles were prepared by solvothermal method and its composites with reduced graphene oxide namely FG1, FG2, and FG3 (changing magnetite precursor loading 0.1, 0.5, and 1 respectively) were used as adsorbents for the removal of methyl violet (MV) dye. The structural and morphological results confirm that rGO sheets were decorated with Fe3O4 and it ensures the variation of active sites toward dye removal property. The maximum adsorption capacity obtained for FG2 was 196 mg/g. The adsorption isotherms and kinetics better fit Langmuir and pseudo-second-order kinetic model for FG1 and FG2. Increasing of Fe3O4 loading on rGO reduces the dye adsorption sites and too low Fe3O4 loading affects the magnetic separation. The optimal loading of Fe3O4 on rGO is important parameter for the adsorption process and fast separation of adsorbent.  相似文献   

4.
In order to enhance the mechanical properties of B4C without density increase, the short carbon fibers M40, M55J and T700 reinforced B4C ceramic composites were fabricated by hot-pressing process. The addition of the carbon fibers accelerates the densification of the B4C, decreases their densities, and improves their strength and toughness. The enhancement effects of the three kinds of carbon fibers were studied by investigating the density, Vickers hardness and the mechanical properties such as flexural strength, flexural modulus and fracture toughness of the composites. The fiber type has a great influence on the mechanical properties and enhancement of the short carbon fiber reinforced B4C composites. The flexible carbon fiber with high strength and low modulus such as T700 is appropriate to reinforce the B4C matrix ceramic composites.  相似文献   

5.
Three-dimensional braided carbon fiber-reinforced nylon composites (C3D/MCN) were prepared in order to investigate the influence of oxidation of carbon fibers on the tribological properties of the C3D/MCN composites. Friction and wear tests of the C3D/MCN composites with untreated and treated carbon fabric were conducted. The characteristics of the carbon fiber, the interface strength, the hardness, and the worn surface morphologies of the C3D/MCN composites were analyzed. The results show that the specific surface area of treated carbon fiber was far higher than that of untreated carbon fiber and there formed a functional group of –C=O on the carbon fiber surface after air oxidation. The oxidation of the carbon fibers improved the interface strength between the carbon fibers and the matrix and had little effect on the hardness of the composites. The friction coefficient and wear rate of C3D/MCN composites with oxidized carbon fibers were apparently lower than those with untreated carbon fibers. In conclusion, the oxidation of the fibers showed good effects on the improvement of the interface strength and the tribological properties of the composites.  相似文献   

6.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

7.
As-synthesized Fe3O4 nanoparticles were encapsulated with carbon layers through a simple hydrothermal process. Fe3O4/C nanoparticles were coated with YVO4:Dy3+ phosphors to form bifunctional Fe3O4@C@YVO4:Dy3+ composites. Their structure, luminescence and magnetic properties were characterized by XRD, SEM, TEM, HRTEM, PL spectra and VSM. The experimental results indicated that the as-prepared bifunctional composites displayed well-defined core–shell structures. The ∼12 nm diameter YVO4:Dy3+ shell exhibited tetragonal structure. Additionally, the composites exhibited a high saturation magnetization (13 emu/g) and excellent luminescence properties, indicating their promising potential as multifunctional biosensors for biomedical applications.  相似文献   

8.
Mn3O4/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn3O4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn3O4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn3O4/graphene nanocomposites exhibited a high specific capacitance of 175 F g−1 in 1 M Na2SO4 electrolyte and 256 F g−1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn3O4/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn3O4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.  相似文献   

9.
In this paper, preparation and characterization of superparamagnetic nanoparticles and their polymer composites prepared by varing doping level of conducting polymer and their microwave absorption studies at radar system in 8–12 GHz frequency range have been discussed. These composites are conducting polymers have been widely used because of their lower density as well their good environmental stability as in the case of polyaniline (PAN). In the present work, in situ polymerization of aniline was carried out in the presence of 30 mole% Fe3O4 nanoparticles to synthesize polyaniline/Fe3O4(PAN/Fe3O4) composites in epoxy resin matrix. The composites, thus synthesized have been characterized by infrared (IR) spectroscopy and X-ray diffraction. The morphology of these composites was studied by scanning electron microscopy. The measurement of % absorption was carried out in X and K band microwave region.  相似文献   

10.
Short ZrO2 fibers (ZrO2(f)) reinforced NiFe2O4 ceramic composites were fabricated by cold pressing process. The phase composition, microstructure, mechanical properties and fiber/matrix interface of the composites were investigated by X-ray diffraction, scanning electron microscopy and mechanical testing machines. ZrO2(f) show good thermodynamic and chemical compatibility with NiFe2O4 ceramic matrix and effectively enhanced the mechanical properties. The toughening mechanisms are fiber bridging, interfacial debonding, fiber pullout, phase transformation and the matrix constraint effect. By incorporation of 3 wt% fibers with the average length of 5~6 mm, the bending strength and fracture toughness of the composites reached 88.92 MPa and 4.62 MPa m1/2, respectively, while the strength conservation ratio after thermal shock increased from 48.85% to 75.86%. The weak interface bonding built up between ZrO2(f) and NiFe2O4 facilitates the reinforcing effects of the fibers to operate.  相似文献   

11.
High strength polyimide fibers with functionalized graphene   总被引:1,自引:0,他引:1  
Graphene possesses unprecedented physical and chemical properties and has been thought to be ideal filler for reinforcing fibers' mechanical properties. However, graphene is difficultly dispersed in polymer which severely restrict to prepare high-strength and high-modulus composites. In this work, we report an effective method to fabricate a kind of organ-soluble polyimide (PI)/graphene composite fiber using in situ polymerization. Graphene oxide (GO) is modified by 4,4′-diaminodiphenyl ether (ODA) to obtain the GO-ODA nanosheets which exhibit excellent dispersibility and compatibility with the organ-soluble PI matrix. WAXD results show that these 2D nanosheets have a significant influence on the crystallization, aggregation or assembly behaviors of the polymer chains. The PI/graphene composite fiber containing 0.8 wt% of GO-ODA presents a tensile strength of 2.5 GPa (1.6 times higher than the pure PI fiber), and tensile modulus of 126 GPa (223% raises compared with pure PI fiber). Furthermore, the incorporation of graphene significantly improves the glass transition temperature and thermal stability of the composite fibers. Thanks to the excellent hydrophobic properties of graphene, the hydrophobic behavior of the composite fibers is greatly improved. This effective approach shows a potential application in fabricating multifunctional polymer-based composite fibers.  相似文献   

12.
Fe3O4-graphene nanocomposite was prepared by a gas/liquid interface reaction. The structure and morphology of the Fe3O4-graphene nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances were evaluated in coin-type cells. Electrochemical tests show that the Fe3O4-22.7 wt.% graphene nanocomposite exhibits much higher capacity retention with a large reversible specific capacity of 1048 mAh g−1 (99% of the initial reversible specific capacity) at the 90th cycle in comparison with that of the bare Fe3O4 nanoparticles (only 226 mAh g−1 at the 34th cycle). The enhanced cycling performance can be attributed to the facts that the graphene sheets distributed between the Fe3O4 nanoparticles can prevent the aggregation of the Fe3O4 nanoparticles, and the Fe3O4-graphene nanocomposite can provide buffering spaces against the volume changes of Fe3O4 nanoparticles during electrochemical cycling.  相似文献   

13.
This paper describes an investigation on an improvement of the interface between Al and short carbon fibers (SCFs) with α-Al2O3 coating by sol–gel technology. The composites of Al/uncoated SCFs and Al/α-Al2O3-**coated SCFs were fabricated successfully by vacuum press infiltration. The formation of α-Al2O3 coating during calcination was analysed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM), energy-dispersive analysis of X-ray (EDAX) and transmission electron microscope (TEM) were used to observe the coated SCFs and the interface of composites. The results showed that the average thickness of the α-Al2O3 coating was about 200–250 nm and the formation of Al4C3 at the interface between Al matrix and SCFs was controlled by the α-Al2O3 coatings.  相似文献   

14.
Herein, the tribological performance, thermal and compression resistance behavior of polyimide (PI) reinforced by Fe2O3 decorated reduced graphene is systematically investigated. The remarkable synergistic effect of Fe2O3 decorated reduced graphene oxide (RGO) is demonstrated in its PI wear resistance, and PI/RGO/Fe2O3 composites show good thermal stability and much higher compression resistant ability than PI, PI/RGO, and PI/Fe2O3 composites when the filling contents are same. Additionally, the PI/RGO/Fe2O3 composites also exhibited ultra-wear-resistant properties under high load condition, and the lowest wear rate is 3.18 × 10−8 mm3N−1 m−1, which is an order of magnitude lower than that of pure PI. The investigation of its tribological mechanism also showed strong synergistic effect and interface force of Fe2O3 decorated RGO, which contribute to its high-performance friction-reducing behaviors. These findings give an inside view to Fe2O3 decorated RGO and its polyimide composites, and open an avenue for the graphene oxide (GO) based composite to act as compression wear-resisting solid fillers and lubricants when polymer composite with excellent compressive, thermal and tribological properties is required.  相似文献   

15.
The polymer composites of magnetic nanoparticles can be possibly used in a bulk form by preserving all the novel characteristics of magnetic nanoparticles such as superparamagnetic behavior. By introducing magnetic properties of Fe3O4 nanoparticles into polymer fibers, novel magnetic properties combine with the advantages of composite fibers such as light-weight and ease-of-use. Using dry-jet-wet fiber spinning technology, we have successfully fabricated iron oxide/polyacrylonitrile (Fe3O4/PAN) composite fibers with 10 wt% nanoparticle in the polymer matrix. Composite fiber with a diameter as small as 15 μm can achieve tensile strength and tensile modulus values as high as 630 MPa and 16 GPa, respectively. Superparamagnetic properties of Fe3O4 nanoparticles were preserved in the composite fibers with saturation magnetization at 80 emu/g and coercivity of 165 G.  相似文献   

16.
A novel methodology combining multiscale mechanical testing and finite element modeling is proposed to quantify the sintering temperature‐dependent mechanical properties of oxide matrix composites, like aluminosilicate (AS) fiber reinforced Al2O3 matrix (ASf/Al2O3) composite in this work. The results showed a high‐temperature sensitivity in the modulus/strength of AS fiber and Al2O3 matrix due to their phase transitions at 1200°C, as revealed by instrumented nanoindentation technique. The interfacial strength, as measured by a novel fiber push‐in technique, was also temperature‐dependent. Specially at 1200°C, an interfacial phase reaction was observed, which bonded the interface tightly, as a result, the interfacial shear strength was up to ≈450 MPa. Employing the measured micro‐mechanical parameters of the composite constituents enabled the prediction of deformation mechanism of the composite in microscale, which suggested a dominant role of interface on the ductile/brittle behavior of the composite in tension and shear. Accordingly, the ASf/Al2O3 composite exhibited a ductile‐to‐brittle transition as the sintering temperature increased from 800 to 1200°C, due to the prohibition of interfacial debonding at higher temperatures, in good agreement with numerical predictions. The proposed multiscale methodology provides a powerful tool to study the mechanical properties of oxide matrix composites qualitatively and quantitatively.  相似文献   

17.
E. Jin  Lili Cui 《Electrochimica acta》2010,55(24):7230-7234
In this work, graphene/prussian blue (PB) composite nanosheets with good dispersibility in aqueous solutions have been synthesized by mixing ferric-(III) chloride and potassium ferricyanide in the presence of graphene under ambient conditions. Transmission electron microscopy (TEM) shows that the average size of the as-synthesized PB nanoparticles on the surface of graphene nanosheets is about 20 nm. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) patterns have been used to characterize the chemical composition of the obtained graphene/PB composite nanosheets. The graphene/PB composite nanosheets exhibit good electrocatalytic behavior to detection of H2O2 at an applied potential of −0.05 V. The sensor shows a good linear dependence on H2O2 concentration in the range of 0.02-0.2 mM with a sensitivity of 196.6 μA mM−1 cm−2. The detection limit is 1.9 μM at the signal-to-noise ratio of 3. Furthermore, the graphene/PB modified electrode exhibits freedom of interference from other co-existing electroactive species. This work provides a new kind of composite modified electrode for amperometric biosensors.  相似文献   

18.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

19.
Cf/SiC composites were fabricated using fiber coatings including CNTs and matrix infiltration using the polymer impregnation and pyrolysis process. Interface between fiber and CNTs (CF/CNTs) was tailored to optimize mechanical properties of hybrid composites. The tailored interphases, such as Pyrocarbon (PyC) and PyC/SiC, protect fibers from degradation during the growth of CNTs successfully. Hybrid composites with well‐tailored CF/CNTs interface displayed significantly increased mechanical strength (352 ± 21 MPa) compared with that (34 ± 3 MPa) of composites reinforced with CNTs, which grown on carbon fibers directly. The interfacial bonding strength of hybrid composites was improved and optimized by tailoring the CF/CNTs interface. Interfacial failure modes were studied, and a firm interface bonding at the joint where CNTs grown was observed.  相似文献   

20.
The FeCo/Fe3O4 nanocomposite was synthesized using the hydrothermal approach, in which the FeCo alloy and Fe3O4 are formed by one step. The structure of the FeCo/Fe3O4 nanocomposite was characterized by means of Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy-dispersive spectrometer spectroscopy (EDX). They show that the mass ratio of FeCo/Fe3O4 strongly depends on the reaction temperature. Such various architectures follow a stepwise growth mechanism of the composites prepared in various reaction temperatures were also discussed. It indicates that this strategy is facile, effective and controllable for the synthesis of FeCo/Fe3O4 by the one-step method. Furthermore, the magnetic and wave-absorbing properties of the nanocomposites with various structures were investigated in detail. The results show that the FeCo/Fe3O4 with higher mass ratio has higher magnetic properties. Moreover, the FeCo/Fe3O4 nanocomposite shows high wave-absorbing properties (e.g., −37.9 dB), which are expected to apply in microwave absorbing materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号