首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用水溶液聚合的方法制备了淀粉/膨润土/聚(丙烯酸-丙烯酰胺)复合高吸水性树脂。探讨了中和度、引发剂用量、交联剂用量、单体组成、膨润土及淀粉用量等反应条件对吸水率的影响。利用FTIR对树脂结构进行了表征、分析。最佳条件下制备的树脂吸水率高、耐盐性好,在蒸馏水和0.9%Na Cl溶液中的最大吸水率分别为893.8 g/g和178.6 g/g。此外,树脂的重复吸水率也有明显改善。  相似文献   

2.
以N,N'-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂,采用水溶液聚合法合成了聚乙烯醇/聚丙烯酸/腐植酸钠多功能高吸水性树脂。研究了聚乙烯醇和腐植酸钠含量对树脂吸水倍率的影响,同时考察了树脂的吸水速率、溶液pH值对吸水倍率的影响及反复溶胀性能。结果表明,在体系中引入廉价的腐植酸钠,能够显著提高树脂的吸水能力。在腐植酸钠含量为10wt%时,树脂具有最高的吸水倍率,其吸蒸馏水和0.9wt%NaCl溶液分别达到1020g/g和80g/g。  相似文献   

3.
以过硫酸钾为引发剂、N,N-亚甲基双丙烯酰胺(NNMBA)为交联剂,采用水溶液聚合法制备聚丙烯酸钠-丙烯酰胺高吸水性树脂,研究了丙烯酸与丙烯酰胺比例、单体浓度、引发剂用量、交联剂用量以及聚合温度对树脂吸水性能的影响。制备的高吸水性树脂吸蒸馏水为593g·g-1,吸自来水为260g·g-1,吸0.9%Na Cl溶液为66.7g·g-1。  相似文献   

4.
本文以氧化—还原引发剂合成聚丙烯腈,将聚丙烯腈与淀粉混合进行皂化接枝制备了高吸水性树脂。研究了该树脂与聚丙烯腈分子量的大小和氢氧化钠、淀粉用量及种类的关系;测试了水解度、吸水率、吸水速度、保水性,以及加热、冷冻、光照、介质对吸水率的影响。该树脂对无离子水的吸水率为2000g/g,0.9%的NaCl溶液为250g/g。  相似文献   

5.
针对吸水树脂使用过程中存在的吸盐水倍率低,降解性能差等问题,以过硫酸钾为引发,N,N'-亚甲基双丙烯酰胺为交联剂,环己烷为连续相,玉米淀粉,丙烯酸和丙烯酰胺为原料,采用反相悬浮聚合法合成淀粉接枝可降解高吸水性树脂微球并进行了相关表征。最佳反应条件下,得到的吸蒸馏水倍率为379.2 g/g,吸0.9%的Na Cl水溶液的倍率为88.1 g/g。最后考察了吸水树脂的保水性能和降解性能,从而为吸水树脂微球应用于农林业保水保肥提供理论指导。  相似文献   

6.
木质素磺酸盐可作为制备高吸水性树脂的反应原料,采用水溶液聚合的方法制备木质素磺酸盐-丙烯酸-丙烯酰胺高吸水性树脂。探讨中和度、引发剂用量、交联剂用量、丙烯酰胺用量及木质素磺酸盐用量等条件对树脂吸水率的影响。通过正交试验优化工艺条件,最佳条件下制备的树脂具有较强的吸水性和耐盐性,在蒸馏水和0.9%NaCl盐水中的吸水率分别为1 012.7 g/g和132.5 g/g。通过红外光谱法对树脂结构进行表征,并对树脂的农业应用进行初步探讨。  相似文献   

7.
介绍了利用聚丙烯腈废料经常压皂化水解和交联剂交联制备高吸水性对脂,研究了水解工艺、交联剂及中水介质对吸水树脂吸水率的影响。该方法工艺简单,操作安全,成本低,产品吸水性树脂吸水率高。  相似文献   

8.
范福海  郝艳玲  张虹 《应用化工》2008,37(5):523-525
腈纶废丝在碱性条件下水解后,水解产物与甲醛和AlCl3进行交联反应可制得高吸水性树脂,对水解反应条件和水解物的结构进行了分析,由正交实验考察了交联反应条件对产物吸水性能的影响,研究了吸水树脂对不同水质的吸水率和吸水速率。结果表明,交联剂用量和沉淀用乙醇的浓度对产物的吸水率有较大的影响,当甲醛和AlCl3用量分别为0.3 mL和1.2 mL,交联温度为80℃,产物用60%的乙醇沉淀并在50℃下烘干时,树脂对蒸馏水的吸水率近800 g/g,有较快的吸水速率。  相似文献   

9.
采用黄原胶为基体, 丙烯酸(AA)为接枝聚合单体,环己烷为连续相,过硫酸钾为引发剂,利用反相悬浮聚合法合成了XG-g-PAA高吸水性树脂。研究了丙烯酸与黄原胶质量比、引发剂(KPS)、交联剂(NMBA)用量、丙烯酸中和度和聚合反应温度等因素对树脂吸水率的影响。利用傅立叶红外光谱(FT-IR)、扫描电镜(SEM)和热重分析仪(TGA)进行了表征。结果表明:丙烯酸分子与黄原胶发生接枝共聚,在最佳工艺条件下制备的XG-g-PAA高吸水性树脂具有良好的吸水和抗盐性能,高温保水性能提高,对蒸馏水的吸收率为845 g.g-1, 0.9%的NaCl溶液的吸水率为96 g.g-1,接枝率达126.5%,接枝效率达82.6%。  相似文献   

10.
淀粉接枝聚合制备高吸水性树脂   总被引:1,自引:0,他引:1  
以红薯淀粉为主要原料,选用丙烯酸和丙烯酰胺为改性单体,经过接枝共聚制备高吸水性树脂,分别考察单体、引发剂和交联剂用量对树脂吸水率的影响,并对树脂吸水动力学进行了初步研究.实验结果显示:当单体、引发剂和交联剂用量分别为淀粉的4倍、5%和0.8%时,高吸水性树脂吸水率最高;该树脂吸水的一级速率过程常数为0.0537min-1.  相似文献   

11.
淀粉-丙烯酸/聚丙烯酰胺复合吸水树脂的制备及性能   总被引:2,自引:1,他引:1  
淀粉用环氧氯丙烷进行预交联,与丙烯酸接枝共聚,生成淀粉-丙烯酸共聚物;再与聚丙烯酰胺聚合,制备淀粉-丙烯酸/聚丙烯酰胺复合高吸水树脂。考察了淀粉用量、引发剂及交联剂对吸水倍率的影响。结果表明,当淀粉用量取2.5 g,复合引发剂取0.02 mmol,交联剂取0.1%时,吸水倍率最大;吸水速率20 min内达到吸水溶胀平衡。  相似文献   

12.
为了满足纸张用光固化涂料的柔性和低黏度要求,首先采用扩链剂二缩三乙二醇与环氧树脂反应,制取柔性环氧,然后用丙烯酸酯化,制得环氧丙烯酸酯预聚体,最后加入稀释剂和光引发剂,制得一种适合纸张浸涂用光固化涂料。涂膜的性能:光固化速率2 5min;硬度HB;耐水性>48h;附着力1级;柔韧性好(对折无痕迹)。  相似文献   

13.
腐殖酸-聚丙烯酸表面交联吸水性树脂的合成与性能   总被引:9,自引:0,他引:9       下载免费PDF全文
初茉  朱书全  李华民  黄占斌  邹力壮 《化工学报》2005,56(10):2004-2008
将交联剂N,N′-亚甲基双丙烯酰胺溶于甲醇溶液制成表面处理液,通过表面交联反应将磺化腐殖酸(HA)与聚丙烯酸(PAA)结合,制得一种适合于农林领域应用的腐殖酸-聚丙烯酸高吸水性树脂(HA-PAA).研究了表面处理液浓度、交联剂用量和腐殖酸量对HA-PAA吸水性能的影响规律和吸水机理,以及产物在沙土中的保水性能,并通过扫描电镜分析了HA-PAA的表面结构.研究结果表明,当含有10% HA时,HA-PAA耐电解质性能良好,吸水性能最佳;当沙土中添加0.2%的HA-PAA时,可明显改善沙土的贮水、保水性能.HA-PAA作为农林领域用保水剂,可发挥抗旱保墒和促进植物生长的双重作用.  相似文献   

14.
环境友好型聚天冬高吸水性树脂的合成   总被引:2,自引:0,他引:2  
以可生物降解的高分子材料聚琥珀酰亚胺为原料,二胺为交联剂,合成了环境友好型聚天冬高吸水性树脂。考察了原料分子量、交联剂种类、交联剂用量、吸水温度以及吸水时间等对树脂吸水倍率的影响。结果表明,交联剂用量显著影响树脂的吸水倍率,以分子量为67500的聚琥珀酰亚胺为原料,己二胺为交联剂,交联剂浓度为1.5%时,树脂吸水倍率为1480。  相似文献   

15.
以玉米秸秆为主要原料,除杂改性得羧甲基纤维素。然后以N,N’-亚甲基双丙烯酰胺为交联剂,分别采用传统加热聚合、微波辐照聚合和超声辐照法合成高吸水性树脂,并对吸水树脂的吸水倍率、吸盐水(质量分数为0.9%NaC l水溶液)倍率及保水能力进行测试。结果表明,同一比例下,超声辐照法制得的吸水性树脂的吸水倍率及保水能力均高于其它两种方法;超声功率为60%的条件下,吸水倍率可达635 g/g。微波辐照法制得的吸水性树脂的吸盐水倍率较高,微波功率为320 W时制得的吸水树脂吸盐水倍率可达65 g/g。  相似文献   

16.
《分离科学与技术》2012,47(15):2338-2344
Emulsion templating of high internal phase emulsion was used to synthesize high oil-absorption resins with hexadecyl methacrylate and methyl methacrylate as monomers. Effects of cross-linking agent, emulsifier, initiator and porogen, polymerization temperature, polymerization time, the water/oil volume ratio, and the dosage of co-monomer on the properties of high oil-absorption resins were discussed. The optimum polymerization conditions for synthesis of high oil-absorbing resin were obtained. The highest oil absorbency in trichloromethane was 34 g/g. The oil absorbency of the resin remained constant after three times recovery.  相似文献   

17.
Superabsorbent polyaspartic acid (PASP) resin was prepared from high molecular weight polysuccinimide (PSI), which was synthesized from l-aspartic acid by thermal polycondensation. The effects of the reaction temperature, the reaction time, the concentration of the solvent, the molecular weight of PSI, the concentration of the cross-linking agent, the hydrolysis conditions, and the drying temperature on the swelling ratio of PASP resin were investigated. The swelling ratios of PASP resin in deionized water and saline solution were measured, and the biodegradability of PASP hydrogel was evaluated. The results show that the swelling ratios of PASP resin in deionized water were 100–1,120 g/g depending on the preparation conditions. The swelling ratio of PASP resin in saline solution reached 143 g/g, and PASP resin was a kind of biodegradable material with high water absorbency, so this PASP resin can be used as agricultural and horticultural water-holding material, and in manufacturing of diapers, sanitary napkins, medical products, etc.  相似文献   

18.
丙烯酸/马来酸酐高吸水树脂的合成   总被引:1,自引:0,他引:1  
以丙烯酸(AA)、丙烯酸盐和马来酸酐(MA)为原料,过硫酸铵(APS)为引发剂,N,N-亚甲基双丙烯酰胺(MBA)和甘油为交联剂,采用水溶液聚合法合成了一种新型的高吸水树脂. 考察了交联剂用量、引发剂用量以及马来酸酐氨化程度对高吸水树脂吸水性能的影响,并通过正交实验优化了条件,使合成的高吸水树脂对去离子水和0.9%的NaCl水溶液的吸收能力分别达到1689 g/g和115 g/g.  相似文献   

19.
采用甲苯二异氰酸酯(TDI)、聚乙二醇(PEG)、二羟甲基丙酸(DMPA)和环氧树脂合成了环氧改性水性聚氨酯乳液。该乳液由于含有不饱和双键而具有感光性能,故可用作水性紫外光固化涂料或胶粘剂的预聚物。探讨了环氧丙烯酸酯(EB)和亲水扩链剂(DMPA)的添加量对涂料和涂膜性能的影响以及光引发剂用量、中和度对光固化涂料转化率的影响。结果表明,随着EB用量的增大,涂膜的硬度、耐水性、耐溶剂性及力学性能增强,但乳液外观和稳定性变差,故适宜的环氧树脂添加量为10%;随着DMPA用量的增加,涂膜硬度、强度提高,而断裂伸长率降低,耐水性变差,故DMPA用量在6%~8%范围为宜;光固化转化率随着中和度的提高而加快,适宜的引发剂用量为3%。本品的缺点是耐汽油性不够理想。  相似文献   

20.
玉米淀粉接枝丙烯酰胺制备高吸水性树脂   总被引:4,自引:1,他引:4  
乌兰 《应用化工》2006,35(1):60-62
用硝酸铈铵作引发剂,通过水溶液聚合法制得了玉米淀粉接枝丙烯酰胺高吸水性树脂。研究了交联剂及引发剂用量、碱用量、反应温度以及反应时间等对吸水率的影响。得到的最佳反应条件为:交联剂和引发剂与丙烯酰胺的摩尔比分别为1.0×10-5和3.0×10-3,碱与丙烯酰胺的摩尔比为1.50,反应温度60℃,反应时间2 h。在室温下制得的高吸水树脂,30 m in每克吸蒸馏水和自来水分别约为其自身质量的600和170倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号