首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-effect distillation (MED) systems are proven and energy efficient thermally-driven desalination systems for handling harsh seawater feed in the Gulf region. The high cycle efficiency is markedly achieved by latent energy re-use with minimal stage temperature-difference across the condensing steam and the evaporating saline seawater in each stage. The efficacies of MED system are (i) its low stage-temperature-difference between top brine temperature (TBT) and final condensing temperature, (ii) its robustness to varying salinity and ability to handle harmful algae Blooming (HABs) and (iii) its compact foot-print per unit water output. The practical TBT of MED systems, hitherto, is around 65 °C for controllable scaling and fouling with the ambient-limited final condenser temperature, usually from 30 to 45 °C.The adsorption (ADC) cycles utilize low-temperature heat sources (typically below 90 °C) to produce useful cooling power and potable water. Hybridizing MED with AD cycles, they synergistically improve the water production rates at the same energy input whilst the AD cycle is driven by the recovered waste heat. We present a practical AD + MED combination that can be retrofitted to existing MEDs: The cooling energy of AD cycle through the water vapor uptake by the adsorbent is recycled internally, providing lower temperature condensing environment in the effects whilst the final condensing temperature of MED is as low as 5–10 °C, which is below ambient. The increase in the temperature difference between TBT and final condensing temperature accommodates additional MED stages. A detailed numerical model is presented to capture the transient behaviors of heat and mass interactions in the combined AD + MED cycles and the results are presented in terms of key variables. It is observed that the water production rates of the combined cycle increase to give a GOR of 8.8 from an initial value of 5.9.  相似文献   

2.
This paper describes the theoretical rationale for a new low temperature phase-change desalination process, and six examples of applications to illustrate how this process can be engineered for sustainable desalination. In this process, brackish water is evaporated at near-ambient temperatures under near-vacuum pressures created by the barometric head without any mechanical energy input. Thermodynamic advantages and benefits of low temperature phase-change desalination are discussed and results from simulation studies and a prototype test system are presented. Three of the examples illustrate how the proposed process can be driven by solar energy: a) utilizing direct solar energy; b) inclusion of an external reflector; c) utilizing photovoltaic energy during non-sunlight hours. The other examples illustrate how the proposed process can be driven by waste heat: i) waste heat rejected by an absorption refrigeration unit driven by grid power; ii) waste heat rejected by an absorption refrigeration unit driven by solar collectors; and iii) waste heat rejected by an absorption refrigeration unit supported by a photovoltaic array. Merits of utilizing solar energy and process waste heat in reducing energy consumption and greenhouse gas emissions are discussed in detail.  相似文献   

3.
In this paper, a detailed parametric study on a dual-mode silica gel–water adsorption chiller is performed. This advanced adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. In this paper, the effect of chilled-water inlet temperature, heat transfer fluid flow rates and adsorption–desorption cycle time effect on cooling capacity and COP of the dual-mode chiller is performed. Simulation results show that both cooling capacity and COP values increase with the increase of chilled water inlet temperature with driving source temperature at 50 and 80 °C in three-stage mode, and single-stage multi-bed mode, respectively. However, the delivered chilled-water temperature increases with chilled-water inlet temperature in both modes.  相似文献   

4.
This paper presents the performances of an adsorption desalination (AD) system in two-bed and four-bed operational modes. The tested results are calculated in terms of key performance parameters namely, (i) specific daily water production (SDWP), (ii) cycle time, and (iii) performance ratio (PR) for various heat source temperatures, mass flow rates, cycle times along with a fixed heat sink temperature. The optimum input parameters such as driving heat source and cycle time of the AD cycle are also evaluated. It is found from the present experimental data that the maximum potable water production per tonne of adsorbent (silica gel) per day is about 10 m3 whilst the corresponding performance ratio is 0.61, and a longer cycle time is required to achieve maximum water production at lower heat source temperatures. This paper also provides a useful guideline for the operational strategy of the AD cycle.  相似文献   

5.
吸附式制冷是一种环境友好的制冷方式,可以利用低品位热能提供冷量,因此具有重要的节能意义。目前,吸附式制冷技术在太阳能热利用、工业余热利用等中低温余热领域已有应用,但对低于60℃热源的利用实例较少。降低吸附式制冷系统所需的驱动热源温度是扩大吸附式制冷系统使用范围的重要手段。吸附式制冷系统所需驱动热源温度与系统循环方式、吸附剂性能等因素密切相关。从二级/多级吸附式制冷循环、表面酸性强度与孔结构等影响吸附剂再生温度方面阐述了降低吸附式制冷系统驱动热源温度技术的国内外研究现状。分析结果显示,多级循环吸附式制冷系统可以降低装置的驱动热源温度,但装置结构较为复杂;低再生温度吸附剂能够拓宽吸附式制冷装置的驱动热源温度范围,吸附剂的脱附温度与表面极性、酸性、孔结构等参数有关,对吸附剂进行改性,吸附剂极性弱、酸性低的表面特性有利于降低脱附温度。另外,还介绍了数据中心余热驱动的吸附式制冷技术。开展降低吸附式制冷系统驱动热源温度的研究为低温余热高效利用提供了技术参考。  相似文献   

6.
D. Proctor 《Solar Energy》1973,14(4):433-436
There are instances in remote areas where heat is being wasted, e.g., in internal combustion, engines, etc. Some of this heat can be recovered to produce distilled water in solar stills.

The solar still replaces the cooling tower, ponds, or radiators normally used to control the engine temperature. The diesel cooling water in such a system remains separate from the saline water in the solar still.

The advantages of using such a system compared with a conventional solar still are:

1. (a) water costs are very much reduced
2. (b) the area occupied is much less, i.e., about 1/5th
3. (c) production has much less seasonal variation
4. (d) the efficiency of the solar still is improved due to the higher operating temperatures.

From experiments conducted at Highett using a Mk VI solar still fitted with a simple heat exchanger and a separate electrically-heated source of hot water to simulate the waste heat, design data are not available for application to working systems. The information required to match a solar still to a diesel's cooling requirement is:

1. (a) engine efficiency
2. (b) hourly fuel consumption
3. (c) hourly solar radiation
4. (d) hourly ambient temperatures.

A by-product of this work has been the production of a “solar water heater” which costs less than that of the cheapest conventional system. This “solar” hot water system uses a heat exchanger similar to what is used to transfer the waste heat to the saline water. It is envisaged to have hot water productions approximately the same as the distilled water productions. The influence of hot water production on the output of the waste heat solar still is discussed.  相似文献   


7.
针对沿海和西北内陆地区淡水紧缺和工业烟气余热的排放问题,设计了一种有机朗肯循环与苦咸水淡化的联合系统对工业烟气余热进行有效回收,以生产淡水和电能。该联合系统将闪蒸法与有机朗肯循环进行有机结合,通过变参数法计算采用戊烷作为工质的有机朗肯循环的循环效率,确定该系统运行的最佳参数,并与水工质朗肯循环进行对比,证明了联合系统的优越性。  相似文献   

8.
低温热能发电的研究现状和发展趋势   总被引:10,自引:1,他引:9       下载免费PDF全文
低温热能种类繁多,数量巨大,利用这部分能源意义重大。介绍了低温热能发电技术的研究现状和发展趋势。低温热能发电技术主要应用于太阳能热电、工业余热发电、地热发电、生物质能发电、海洋温差发电等方面。现阶段低温热能发电的研究重点有:工质的热物性和环保性能、循环优化研究;提高低温热能发电效率的研究,包括混合工质循环、Kalina循环、回热、氨吸收式动力制冷循环等;基于有限时间热力学的系统最优控制等方面的研究。  相似文献   

9.
In this study, four potential methods are identified for geothermal-based hydrogen production, namely, (i) directly from the geothermal steam, (ii) through conventional water electrolysis using the electricity generated from geothermal power plant, (iii) using both geothermal heat and electricity for high temperature steam electrolysis and/or hybrid processes, (iv) using the heat available from geothermal resource in thermochemical processes to disassociate water into hydrogen and oxygen. Here we focus on relatively low-temperature thermochemical and hybrid cycles, due to their greater application possibility, and examine them as a potential option for hydrogen production using geothermal heat. We also present a brief thermodynamic analysis to assess their performance through energy and exergy efficiencies for comparison purposes. The results show that these cycles have good potential and become attractive due to the overall system efficiencies over 50%. The copper–chlorine cycle is identified as a highly promising cycle for geothermal hydrogen production. Furthermore, three types of industrial electrolysis methods, which are generally considered for hydrogen production currently, are also discussed and compared with the above mentioned cycles.  相似文献   

10.
Freshwater and energy are essential commodities for well being of mankind. Due to increasing population growth on the one hand, and rapid industrialization on the other, today's world is facing unprecedented challenge of meeting the current needs for these two commodities as well as ensuring the needs of future generations. One approach to this global crisis of water and energy supply is to utilize renewable energy sources to produce freshwater from impaired water sources by desalination. Sustainable practices and innovative desalination technologies for water reuse and energy recovery (staging, waste heat utilization, hybridization) have the potential to reduce the stress on the existing water and energy sources with a minimal impact to the environment. This paper discusses existing and emerging desalination technologies and possible combinations of renewable energy sources to drive them and associated desalination costs. It is suggested that a holistic approach of coupling renewable energy sources with technologies for recovery, reuse, and recycle of both energy and water can be a sustainable and environment friendly approach to meet the world's energy and water needs. High capital costs for renewable energy sources for small-scale applications suggest that a hybrid energy source comprising both grid-powered energy and renewable energy will reduce the desalination costs considering present economics of energy.  相似文献   

11.
A review and assessment of data pertaining to the origin and nature of low-temperature geothermal activity in Iceland are presented. This activity is widely distributed in Quaternary and Tertiary formations on the American plate in western Iceland west of the active belts of volcanism and rifting but it is very sparse on the European plate east of these belts. Low-temperature systems occur in a few places within the active volcanic belts. Temperatures range from just above ambient to a little over 150°C. Generally speaking, resevoir temperatures decrease with increasing distance from the active volcanic belts. The distribution of the low-temperature areas can be correlated to a large extent with active tectonism. In Iceland the European plate is tectonically stable but in the American plate the shear stress field is complicated, leading to complex fracturing and faulting of the crust at present. No single generalized conceptual model describes the basic features of all low-temperature areas in Iceland. Low-temperature geothermal activity is considered to develop by one of the following four processes, or any combination of them: (1) deep flow of groundwater from highland to lowland areas through permeable structures driven by the hydraulic gradient; (2) convection in young fractures formed by tectonic movements in old and relatively impermeable bedrock; (3) drift of high-temperature geothermal systems out of the active volcanic belts in conjunction with their cooling and extinction of the magma heat source; and (4) magma intrusion into Quaternary or Tertiary formations adjacent to the active volcanic belts. Formation of permeable fractures by recent earth movements is probably the most common process responsible for the development of low-temperature activity through convection in these fractures. Convection in low-temperature systems with temperatures above some 60°C is probably mostly driven by pressure differences created by a relatively light hot water column within the system and a denser cold water column outside it. In systems of lower temperature the convection is driven by hydrostatic head in the recharge areas. The source of the low-temperature waters is largely meteoric. However, in some coastal areas a significant seawater-groundwater component is present, up to 10%. Waters not containing a seawater component are low in dissolved solids, or in the range 150–500 ppm. The reason is the low content of anions, particularly Cl, in the basaltic rock forming soluble salts with the major aqueous cations. Geothermal waters from the low-temperature areas in Iceland typically possess lower δD-values (more negative) than the local precipitation. This difference is variable; most often it lies in the range of 10–30% δD, but it may be as large as 70‰. This difference has been considered to indicate that the recharge areas to the low-temperature areas lie inland on higher ground, the distance being as much as 150 km. The interpretation favoured here is that at least some of the low-temperature waters contain a component of “ice-age water”, i.e. water that is older than about 10, 000 years. The “ice-age water” is depleted in deuterium relative to today's precipitation. When “ice-age water” is present in the geothermal water, deuterium cannot be used as a tracer to locate the recharge areas to the geothermal areas and in this way to deduce about regional groundwater flow.  相似文献   

12.
龚路远  杨勇  沈胜强 《节能》2011,30(5):4-8
随着横管降膜蒸发技术在低温多效蒸发海水淡化系统中的应用和推广,低温多效蒸发海水淡化技术以其传热系数高、热耗量小、要求供热的温位低等优点成为未来第二代海水淡化技术的主流技术.本文开展了横管降膜低温多效蒸发海水淡化系统的优化设计,比较了不同流程下低温多效蒸发海水淡化系统的热力特性,串并结合流程以其传热面积小、设备制造成本低...  相似文献   

13.
Selection of materials for metal hydride couples is considered for the development of refrigerating machines and hydride heat pumps (MHHP) in the temperature ranges from −30 to 200 °C. The slope of the plateau and hysteresis of “pressure-composition” isotherms, the influence of the mass of the reactor on the efficiency of cycle, and the choice of operating parameters are taken into account as opposed to the ideal thermodynamic cycle described in literature. Some results, obtained during the development and installation of MHHP for water cooling are presented. MHHP are assembled from modules with heat/cold capacity of 150–200 W. The design of the modules provides hydrogen transfer at approximately equal pressure in the high- and low-temperature sides of reactor when the valves between them are absent.  相似文献   

14.
Ahmed A.A. Attia 《Solar Energy》2012,86(9):2486-2493
As Natural resources are becoming limited and energy price dramatically increased, energy utilization with efficient systems is essentially required to be used in desalination technologies. The use of solar energy in desalination processes is one of the most promising applications of renewable energies. The primary focus on desalination by solar energy is suitable for use in remote areas. A proposed desalination system uses solar radiation, which concentrated by parabolic dish to heat up the working fluid in a closed space. Then the generated pressure in this space used to push salt water into RO module.Daily production rate of fresh water quantity for suggested system compared with other solar techniques is a promising rate for each m2 of solar radiation collecting surface. The production rate for one operation cycle could reach to 1800 L/cycle of fresh water at low water salinity (Brackish water with 5000 ppm) and 55 L/cycle at highest water salinity (sea water salinity with 42,000 ppm). The required energy needed to produce 1 kg of fresh water is also promising even when in case of using another type of energy, also operating cycle has ability of repetition according to salinity concentration through sunny hours.  相似文献   

15.
An organic Rankine cycle (ORC) machine is similar to a conventional steam cycle energy conversion system, but uses an organic fluid such as refrigerants and hydrocarbons instead of water. In recent years, research was intensified on this device as it is being progressively adopted as premier technology to convert low-temperature heat resources into power. Available heat resources are: solar energy, geothermal energy, biomass products, surface seawater, and waste heat from various thermal processes. This paper presents existing applications and analyzes their maturity. Binary geothermal and binary biomass CHP are already mature. Provided the interest to recover waste heat rejected by thermal devices and industrial processes continue to grow, and favorable legislative conditions are adopted, waste heat recovery organic Rankine cycle systems in the near future will experience a rapid growth. Solar modular power plants are being intensely investigated at smaller scale for cogeneration applications in buildings but larger plants are also expected in tropical or Sahel regions with constant and low solar radiation intensity. OTEC power plants operating mainly on offshore installations at very low temperature have been advertised as total resource systems and interest on this technology is growing in large isolated islands.  相似文献   

16.
Ballast water management is a national and international issue in the shipping industry because of potential ecological hazards caused by the release of ballast water into the marine environment. Although many international standards have been implemented in recent years, technological and practical considerations make the ballast water treatment a major challenge for many shipping companies. In this paper, a novel concept of utilizing ballast water as source water for a multieffect desalination process driven by onboard waste heat to meet the freshwater supply needs is proposed with theoretical analysis and practical considerations. A main engine with a capacity of 7500 kW in a cruise ship can serve as a potential waste heat source for water desalination of 1000 m3/d, which can provide for freshwater needs of 2000 to 4000 ship occupants. This scenario presents an attractive alternative to ballast water management and treatment as well as reducing the nonrenewable energy footprint of onboard water supplies in marine industry.  相似文献   

17.
  目的  为实现燃煤发电机组进一步扩大其热电比的需求,结合原有机组特点耦合余热利用技术成为了有效方式之一。现有余热利用技术的适应特点以及调节能力具有较大差异。  方法  综合评述了几种余热回收利用方式,同时对比了其原理、优缺点,并通过介绍常用的评价指标进一步评述了当下余热回收技术的关注点。  结果  对于余热回收利用技术方式,目前主要有烟气余热回收,循环水余热回收,空气源余热回收,工业废气回收等方式。其温度区间分别为120~150 ℃、15~35 ℃、0~60 ℃、300 ℃以下。耦合余热利用技术的评价方法主要包括通过性能评价、经济性评价以及系统参数关联评价,其中以热耗、热效率等评价参数为主。  结论  文章给出了余热回收利用技术的发展方向及相关建议。耦合余热回收利用技术目前主要应用于热泵系统,在未来更高热电比需求下,采用冷端余热供热的低压缸改造技术将成为一大发展重点。  相似文献   

18.
A large amount of consumed energy is released to the environment as waste heat, which may be used directly in some applications for useful purposes. Thus, from the standpoint of energy conservation, it will be meaningful to investigate systems with waste heat utilization. It has long been indicated that absorption cycles may have good potential applications for enhancing energy conservation via waste heat recovery. As such they have often been identified as an appropriate subject for research and development. Along this line, this paper also examines the development of an absorption cycle with waste heat utilization. More specifically, this study investigates a double-effect LiBr–water absorption cycle which uses exhaust gases from the burner of the high-temperature generator to preheat the weak absorbent solution on its way from the absorber to the low-temperature generator. The overall performance of the absorption heater/chiller system is analyzed and discussed on the basis of experimental results.  相似文献   

19.
This paper develops a four-step copper-chlorine cycle for hydrogen production with conceptual modification through flash vaporization and evaluates its economic and environmental performances through exergy approach. The flash vaporization method is employed as a new approach for realizing the anolyte separation under vacuum conditions for reducing the thermal requirement of the anolyte separation step and consequently of the overall cycle. A flash vaporization is usually employed commercially for seawater desalination purposes. However, its utilization in a thermochemical hydrogen production process has not been considered previously which is really one of primary novelties of this investigation. The obtained results for the exergoeconomic and exergoenvironmental analyses of the conceptually modified cycle are also compared with those of the existing integrated cycle at the Ontario Tech University. The exergoeconomic analysis of the cycle has also been carried out for the cycle operating with and without waste heat recovery. In this regard, waste heat recovery from a steel furnace has been considered for supplying the required thermal energy for the hydrolysis step. The cost assessment of the cycle is carried out in the Aspen-plus. Compared with the existing cycle, the cycle with the proposed modification results in a lower unit cost of hydrogen. Moreover, a significant reduction in the unit cost of hydrogen is observed when waste heat recovery is considered for the modified cycle. The average unit hydrogen cost for the modified version of the cycle is evaluated to be 4.7 $/kg which reduces to 2 $/kg with incorporation of waste heat recovery. Furthermore, the overall environmental impact of the existing cycle can be potentially minimized by considering the proposed modification through flash vaporization.  相似文献   

20.
A novel solar-powered adsorption cooling system for low-temperature grain storage has been built, which consists of a solar-powered water heating system, a silica gel–water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller is composed of two identical adsorption units, each of them containing an adsorber, a condenser, and an evaporator/receiver. The two water evaporators have been incorporated into one methanol evaporator by the use of the concept of a gravity heat pipe. In order to improve the system efficiency and achieve continuous cooling production, the adsorbers are operated out-of-phase, and heat and mass recovery processes have been used. During the period from July to September of 2004, the system was put into experimental operation to cool the headspace (i.e., the air volume above the grain) of a grain bin. Three months of operation showed promising performance. The chiller had a cooling power between 66 and 90 W per m2 of collector surface, with a daily solar cooling coefficient of performance (COPsolar) ranging from 0.096 to 0.13. The electric cooling COP was between 2.6 and 3.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号