首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, experimental fatigue crack growth of thick aluminium panels containing a central inclined crack of 45° repaired with single-side glass/epoxy composite patch are performed. It is shown that, the technique of single-side repair using glass/epoxy composite patch is effective in the crack growth life extension of the thick panels in mixed-mode conditions. It is also shown that the crack-front of the propagated cracks of the repaired panels has a curvilinear shape which is the effect of the existed out-of-plane bending due to the asymmetry conditions in the single-side repaired panels. It is indicated that the crack propagation path at patched surface is different from the un-patched surface of the panels. In the primary stages of the crack growth, the crack surfaces through the thickness, in the vicinity of the mid-plane propagate without surface twisting. There are considerable differences between the obtained crack growth path at patched and un-patched surfaces of the panels which mean that the crack propagation surfaces have three-dimensional patterns. Using the various thin patch lay-ups has minor effects on the crack re-initiation life of the repaired thick panels. It is shown that using various four layers patch lay-up configurations, the crack propagation life of the cracked panels may increase by the order of 30–85%. The most fatigue crack growth life extension belongs to the repaired panel with the patch lay-up of [90]4.  相似文献   

2.
This study introduces an analytical procedure to characterize the fatigue crack growth behavior in an aluminium panel repaired with a bonded composite patch. This procedure involves the computation of the stress intensity factor from a two-dimensional finite element method consisting of three layers to model cracked plate, adhesive and composite patch. In this three layer finite element analysis, as recently introduced by the authors, two-dimensional Mindlin plate elements with transverse shear deformation capability are used. The computed stress intensity factor is then compared with the experimental counterpart. The latter was obtained from the measured fatigue crack growth rate of an aluminium panel with a bonded patch by using the power law relationship (Paris Law) of an unpatched aluminum panel. Both a completely bonded patch (with no debond) and a partially bonded patch (with debond) are investigated in this study. This procedure, thus, provides an effective and reliable technique to predict the fatigue life of a repaired structure with a bonded patch, or alternatively, it can be used to design the bonded composite patch configuration to enhance the fatigue life of cracked structure.  相似文献   

3.
A combined boundary element method and finite element method (BEM/FEM) is employed to investigate the fatigue crack growth behavior of cracked aluminum panels repaired with an adhesively bonded fiber-reinforced polymer (FRP) composite patch. Numerical simulation of crack growth process of a cracked aluminum panel repaired with a FRP composite patch under uniaxial cyclic loading has been carried out. The curve of crack length on unpatched side of the cracked panel versus the number of cyclic loading is determined by the numerical simulation, and it agrees well with experimental data. Furthermore, the crack front profiles of the cracked panel during fatigue crack growth and the distributions of stress intensity factors along crack fronts are also numerically simulated.  相似文献   

4.
Fatigue crack growth behavior in a stiffened thin 2024-T3 aluminum panel repaired with one-sided adhesively bonded composite patch was investigated through experiments and analyses. The patch had three plies of unidirectional boron/epoxy composite. 2024-T3 aluminum stiffeners were riveted as well as bonded on the panel. Stiffeners were oriented in the loading direction and were spaced at either 102 mm or 152 mm with a crack centered between them. Also, un-repaired cracked panel with and without stiffeners were studied. Experiment involved tension-tension fatigue at constant amplitude with maximum stress of 120 MPa and stress ratio of 0.05. Bonded composite patch repair increased fatigue life about five-fold in the case of stiffened panels while it increased about ten fold in the case of un-stiffened panels. Fatigue life also increased with decrease of the distance between the stiffeners for both repaired and un-repaired panels. A three-dimensional finite element method was used to analyze the experiments. Residual thermal stresses, developed during patch bonding, requires the knowledge of temperature at which adhesive becomes effective in creating a bond between the structure and patch in the analysis. A simple method to estimate the effective curing temperature range is suggested in this study. The computed stress intensity factor versus measured crack growth relationships for all panel configurations were consistent and in agreement with the counterpart from the test material. Thus, the present approach provides a means to analyze the fatigue crack growth behavior of stiffened structures repaired with adhesively bonded composite patch.  相似文献   

5.
《Composites Part A》2007,38(4):1141-1148
Crack-front shape is an important parameter influencing the stress intensity factor and crack propagation rate in asymmetric repaired panels. In this study, the numerical and experimental fatigue crack growth behaviour of centrally cracked aluminum panels in mode-I condition repaired with single-side composite patches are investigated. It is shown that the crack growths non-uniformly from its initial location through the thickness of a single-side repaired panel. There is a good agreement between the propagated crack-front shapes obtained from finite element analysis with those obtained from the experiments for various repaired panels with different patch thicknesses. Furthermore, effects of plate and patch thickness on the crack growth life of the repaired panels are investigated. The experimental results show that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extend about 21–35% using a 4 layers patch. Implementing of 8 and 16 layers patches has not a significant effect on the life extension of thick panels with respect to the 4 layers patch life.  相似文献   

6.
The problem of damage evolution in composite structures, the way it propagates, performance and behavior is of paramount importance in utilizing them for structural applications. In the present work, an experimental study is carried out using digital image correlation (DIC) technique to analyze the behavior of adhesively bonded patch repair of carbon/epoxy unidirectional composite laminates under tensile loading. The damaged panel is repaired with both double and single sided circular patch made of same parent material. Damage initiation and propagation in notched and repaired panel as well as patch debonding is studied using 3D-DIC. Also a 3-D finite element analysis is carried out and obtained strain values are compared with the experimental prediction. They are found to be in good agreement.  相似文献   

7.
This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analytical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.  相似文献   

8.
S. Naboulsi  S. Mall   《Composite Structures》1998,41(3-4):303-313
Analyses of adhesively bonded composite patches to repair cracked structures have been the focus of many studies. Most of these studies investigated the damage tolerance of the repaired structure by using linear analysis. This study involves nonlinear analysis of the adhesively bonded composite patch to investigate its effects on the damage tolerance of the repaired structure. The nonlinear analysis utilizes the three-layer technique which includes geometric nonlinearity to account for large displacements of the repaired structure and also material nonlinearity of the adhesive. The three-layer technique uses two-dimensional finite element analysis with Mindlin plate elements to model the cracked plate, adhesive and composite patch. The effects of geometric nonlinearity on the damage tolerance of the cracked plate is investigated by computing the stress intensity factor and fatigue growth rate of the crack in the plate. The adhesive is modeled as a nonlinear material to characterize debond behavior. The elastic-plastic analysis of the adhesive utilizes the extended Drucker-Prager model. A detailed discussion on the effects of nonlinear analysis for a bonded composite patch repair of a cracked aluminum panel is presented in this paper.  相似文献   

9.
The fatigue failure mechanism of a sandwich structure with discontinuous ceramic tile core is characterized. The sandwich structure in consideration comprises ceramic core tiles bonded to composite face sheet with a compliant adhesive layer. The discontinuous nature of the core results in a non-uniform stress field under in-plane loading of the sandwich. Static tensile tests performed on sandwich coupons revealed first damage as debonding at the gaps between adjacent tiles in the core. Tension–tension fatigue tests caused debonding at the gaps followed by initiation of cracks in the adhesive layer between the face sheet and core. Experimental data for crack length versus number of cycles is collected at various load levels. Crack growth rates (da/dN) are determined based on the experimental data acquired. The energy release rate available for crack propagation is computed using an analytical model and finite element analysis. Mode separation performed using the Virtual Crack Closure Technique (VCCT) revealed that crack propagation is completely dominated by shear (mode II). Fatigue crack growth behavior for the discontinuous sandwich structure is quantified by correlating the cyclic energy release rate with the rate of crack propagation. The loss of specimen stiffness with crack propagation is quantified using an analytical model.  相似文献   

10.
In this study, we investigate the experimental fatigue crack-growth behaviour of centrally cracked aluminium panels in mode-I condition which have been repaired with single-side composite patches. It shows that the crack growths non-uniformly from its initial location through the thickness of the single-side repaired panels. The propagated crack-front shapes are preformed for various repaired panels with different patch thicknesses. It is shown that there are considerable differences between the crack-front shapes obtained for thin repaired panels with various patch thicknesses. However, the crack-front shapes of thick repaired panels are not significantly changed with various patch thicknesses. Furthermore, effects of patch thickness on the crack growth life of the repaired panels are investigated for two typical thin and thick panel thicknesses. It shows that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extended about 21–35% using a 4 layers patch, and implementing 8 and 16 layers patches has not a significant effect on the life extension with respect to the 4 layers patch life.  相似文献   

11.
In this paper, experimental and numerical fatigue crack growth of thin aluminium panels containing a central inclined crack of 45° with single-side glass/epoxy composite patch are performed. Effects of patch lay-up configuration on the restarting crack growth (crack re-initiation) life and crack growth rate of the repaired panels are investigated. The obtained experimental results are compared with those predicted using finite element analysis based on both mid-plane and unpatched surface fracture parameters. In the finite elements analyses, it is assumed that the crack-front remains perpendicular to the panel's surfaces during its propagation. It is shown that the finite element crack re-initiation and propagation lives predictions using the unpatched surface results are too conservative. However, the finite element mid-plane results lead to a non-conservative life prediction. It is experimentally shown that, the most effective patch lay-up configurations to retard the crack growth of the repaired panels is [−45/+45]2; however, the most life extension including the crack propagation cycles belongs to the patch lay-up of [904]. It is also shown that using the asymmetric patch lay-up configuration similar to [902/02] with a proper bonding process may lead to a very slow crack growth rate, even slower than the patch lay-up of [904].  相似文献   

12.
Acoustic emission based tensile characteristics of sandwich composites   总被引:4,自引:0,他引:4  
Sandwich composite static and fatigue testing results indicated the predominant failure to be the core damage followed by interfacial debonding, resin cracking and fiber rupture. Under static testing, crack was observed to initiate in the core and ensue planar propagation near the interface with the facesheets; whereas, onset of crack initiation in the facesheets served as a precursor to the catastrophic failure. Multiple failure initiation and propagation sites in the core and intermittent interfacial debonding were consistently observed under fatigue. An acoustic emission based stiffness reduction model is presented that seems to accurately identify the extent of damage in sandwich composites subjected to fatigue loading conditions.  相似文献   

13.
Fatigue crack growth analyses of aluminum panels with stiffeners repaired by composite patches have been rarely investigated. Generally, cracks may occur around the rivets which are capable to propagate under cyclic loadings. A composite patch can be used to stop or retard the crack growth rate. In this investigation, finite element method is used for the crack propagation analyses of stiffened aluminum panels repaired with composite patches. In these analyses, the crack-front can propagate in 3-D general mixed-mode conditions. The incremental 3-D crack growth of the repaired panels is automatically handled by a developed ANSYS Parametric Design Language (APDL) code. Effects of rivets distances and their diameters on the crack growth life of repaired panels are investigated. Moreover, the obtained crack-front shapes at various crack growth steps, crack trajectories, and life of the unrepaired and repaired panels with various glass/epoxy patch lay-ups and various patch thicknesses are discussed.  相似文献   

14.
A two-dimensional finite element analysis is presented to predict crack growth behavior of cracked panels repaired with bonded composite patch. Fatigue experiments were conducted with precracked aluminum specimens of two thicknesses (1 and 6.35 mm), with and without debond, and repaired asymmetrically. Fatigue lives of thick and thin repaired panels extended four and ten times relative to unrepaired cases, respectively. The predicted fatigue crack growth rates were in agreement with experimental values at the unpatched face but not at the patched face. Thus, the present analysis provides a conservative assessment of durability and damage tolerance of repaired thin and thick panels.  相似文献   

15.
In this study, the crack growth behaviour of an aluminium plate cracked at the tip and repaired with a bonded boron/epoxy composite patch in the case of full-width disbond was investigated. This effect is the imperfection which could result during the bonded patch of the repaired structure. Disbonds of various sizes and situated at different positions with respect to the crack tip as well as the effect of adhesive and patch thickness on repair performance were examined. An analysis procedure involving the efficient finite element modelling applied to cracked plate, adhesive and composite patch was used to compute the stress intensity factors. The crack growth rate is dominated by the stress intensity factor near the location and size of the pre-existing disbonds. The cracked plate and disbond propagation result in an increase in the patch deformation. The patch does not have an influence on the crack growth when the ratio 2a/dR exceeds 0.8.  相似文献   

16.
The fatigue resistance of a single-lap aluminium adhesive joint to cyclic loading in combined shear and bending mode is investigated by nonlinear finite element analysis and crack propagation experiments. The epoxy adhesive is modelled by an elasto-plastic overlay material model. The initial cycles build up a residual stress state, leading to nearly linear material behaviour in the following cycles. Fatigue crack propagation is modelled by removing adhesive elements. Two series of experiments with one-sided cyclic load were carried out. The crack length was monitored by measuring the bending compliance around the end of the overlap with clip-gauges. The crack length is determined as a simple linear function of the measured compliance. The experiments show nearly constant rate crack growth until failure, with no appreciable crack initiation period. The rate of crack growth is proportional to the stress level to the power m = 6.2. Fatigue life results are given in the form of S---N curves for adhesive thickness of 0.1 and 0.3 mm. There is no systematic influence of the thickness of the adhesive on the fatigue life. This supports the use of a crack propagation and fatigue life criterion formulated in terms of the energy release rate.  相似文献   

17.
This paper describes studies on fatigue crack propagation in cracked aluminium alloy (2024 T3) panels repaired with boron/epoxy patches, adhesively bonded with either an epoxy-nitrile film adhesive or an acrylic adhesive. Studies were undertaken to assess the effect on patching efficiency of (a) disbonding of the patch system and (b) test temperature. A simple model is proposed for estimating the reduction of patching efficiency due to cyclic disbonding of the reinforcement. In the elevated-temperature tests it was found, unexpectedly, that patching efficiency in panels patched using the film adhesive was unaffected by temperatures up to 100°C.  相似文献   

18.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

19.
通过原位扫描电子显微镜(SEM)研究了粉末冶金制备的Cu/WCp复合材料的疲劳裂纹萌生和扩展行为,分析了颗粒和微观结构对Cu/WCp复合材料疲劳裂纹萌生和早期扩展行为的影响。结果表明:疲劳微裂纹萌生于WCp颗粒和基体Cu的界面;微裂纹之间相互连接并形成主裂纹,当主裂纹和颗粒相遇时裂纹沿着颗粒界面扩展。在低应力强度因子幅ΔK区域疲劳小裂纹具有明显的"异常现象",并占据了全寿命的71%左右。疲劳小裂纹的早期扩展阶段易受局部微观结构和颗粒WCp的影响,扩展速率波动性较大,随机性较强;当小裂纹长度超过150μm时,裂纹扩展加快直至试样快速断裂。裂纹偏折、分叉和塑性尾迹降低了疲劳裂纹扩展速率,而颗粒界面脱粘则提高了复合材料的疲劳裂纹扩展速率。通过数值模拟也可以发现颗粒脱粘增大了材料的疲劳扩展驱动力,从而提高了疲劳裂纹扩展速率。  相似文献   

20.
This paper presents experimental and numerical investigations of the fatigue crack initiation and growth mechanism in metal-to-composite bonded double-lap joints. Fatigue tests were conducted under tension dominated loading, with crack lengths being measured optically. Examination of the fracture surface using scanning electron microscope revealed that fatigue cracks were near the interface between the co-cured adhesive and the first ply of the composite adherend. The finite element method has been used to determine the strain-energy release rate of a fatigue crack growing along the first ply of the composite. The effects of spew fillet size and crack initiation modes have also been studied by the finite element method. Comparison of the present experimental crack growth results with those measured using double-overlap joints, where the fatigue cracks were driven by pure mode II loading, indicate that the tensile mode loading has a overwhelming effect on the fatigue crack growth rates. The present results suggest that fatigue failure of metal-composite double-lap joints is mainly driven by tensile mode loading due to the peel stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号