首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Melt blending of linear low density polyethylene (LLDPE) and polylactide (PLA) was performed in an extrusion mixer with post extrusion blown film attachment with and without compatibilizer‐grafted low density polyethylene maleic anhydride. The blend compositions were optimized for tensile properties as per ASTM D 882‐91. On the basis of this, LLDPE 80 [80 wt % LLDPE and 20 wt % poly(L ‐lactic acid) (PLLA)] and MA‐g‐low‐density polyethylene 80/4 (80 wt % LLDPE, 20 wt % PLLA, and 4 phr compatibilizer) were found to be an optimum composition. The blends were characterized according to their mechanical, thermal, and morphological behavior. Fourier transform infrared spectroscopy revealed that the presence of compatibilizer enhanced the blend compatibility to some extent. The morphological characteristics of the blends with and without compatibilizer were examined by scanning electron microscopy. The dispersion of PLLA in the LLDPE matrix increased with the addition of compatibilizer. This blend may be used for packaging applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Melt blending of linear low density polyethylene (LLDPE) and polylactide (PLLA) was performed in an extrusion mixer with post extrusion blown film attachment with and without compatibilizer-grafted low density polyethylene maleic anhydride. The blend compositions were optimized for tensile properties as per ASTM D 882-91. Based on this, LLDPE 80 (80 wt% LLDPE & 20 wt% PLLA) and M-g-L 80/4 (80 wt% LLDPE, 20 wt% PLLA and 4 parts compatibilizer per hundred parts of resin) were found to be an optimum composition. FTIR reveals that the presence of compatibilizer shifts carbonyl peak hence some increase in interaction between LLDPE and PLLA. Morphological characteristics of the fracture surface of with and without compatibilizer blends were examined by scanning electron microscopy. It shows that use of compatibilizer enhances the dispersions of PLLA in LLDPE matrix. Thermogravimetric (TG) analysis of blends shows the M-g-L 80/4 blend has higher thermal stability among studied blends. The degradation study under different pH of soil compost gives that in alkaline condition and the presence of compatibilizer was favorable for degradation. This blend may be used for packaging application.  相似文献   

3.
Nanocomposites based on high density polyethylene (HDPE)/linear low density polyethylene (LLDPE) blend were prepared by melt compounding in a twin‐screw extruder using organoclay (montmorillonite) as nano‐filler and a 50/50 wt% mixture of maleic anhydride functionalized high density polyethylene (HDPE‐g‐MA) and linear low density polyethylene (LLDPE‐g‐MA) as the compatibilizing system. The addition of a maleated polyethylene‐based compatibilizing system was required to improve the organoclay dispersion in the HDPE/LLDPE blend‐based nanocomposite. In this work, the relationships between thermal properties, gas transport properties, and morphology were correlated. The compatibilized nanocomposite exhibited an intercalated morphology with a small number of individual platelets dispersed in the HDPE/LLDPE matrix, leading to an significant decrease in the oxygen permeation coefficient of the nanocomposites. A decrease in the carbon dioxide permeability and oxygen permeability with increase of nanoclay was observed for the compatibilized nanocomposites. The carbon dioxide permeability of the compatibilized nanocomposites was lower than the carbon dioxide permeability of the uncompatibilized nanocomposites even with the low intrinsic barrier properties of the compatibilizer. These effects were attributed to a good dispersion of the inorganic filler, good wettability of the filler by the polymer matrix, and strong interactions at the interface that increased the tortuous path for diffusion. Theoretical permeability models were used to estimate the final aspect ratio of nanoclay in the nanocomposite and showed good agreement with the aspect ratio obtained directly from TEM images. POLYM. ENG. SCI., 56:765–775, 2016. © 2016 Society of Plastics Engineers  相似文献   

4.
The influence of two different compatibilizers and their combination (maleic anhydride grafted high density polyethylene, HDPE‐g‐MA; maleic anhydride grafted linear low density polyethylene, LLDPE‐g‐MA; and 50/50 wt % mixture of these compatibilizers) on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE/organoclay blend‐based nanocomposites was evaluated. Nanocomposites were obtained by melt‐intercalation in a torque rheometer in two steps. Masterbatches (compatibilizer/nanoclay 2:1) were obtained and subsequently diluted in the HDPE/LLDPE matrix producing nanocomposites with 2.5 wt % of nanoclay. Wide angle X‐ray diffraction (WAXD), steady‐state rheological properties, and transmission electron microscopy (TEM) were used to determine the influence of different compatibilizer systems on intercalation and/or exfoliation process which occurs preferentially in the amorphous phase, and thermomechanical properties. The LLDPE‐g‐MA with a high melt index (and consequently low viscosity and crystallinity) was an effective compatibilizer for this system. Furthermore, the compatibilized nanocomposites with LLDPE‐g‐MA or mixture of HDPE‐g‐MA and LLDPE‐g‐MA exhibited better nanoclay's dispersion and distribution with stronger interactions between the matrix and the nanoclay. These results indicated that the addition of maleic anhydride grafted polyethylene facilitates both, the exfoliation and/or intercalation of the clays and its adhesion to HDPE/LLDPE blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1726–1735, 2013  相似文献   

5.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

6.
In the presence of dicumyl peroxide, the compatibility of thermal plasticized starch/linear low‐density polyethylene (TPS/LLDPE) blends using maleic anhydride (MAH) as compatibilizer was investigated. The thermal plasticization of starch and its compatibilizing modification with LLDPE was accomplished in a single‐screw extruder at the same time. We prepared three types of blends containing different percentages of TPS and MAH. The content of MAH based on LLDPE was 0, 1, and 2 wt %, respectively. The morphology of the blends was studied by SEM. It was found that, with the addition of MAH, the blends have good interfacial adhesion and finely dispersed TPS and LLDPE phases, which is reflected in the mechanical and thermal properties of the blends. The blends containing MAH showed higher tensile strength, elongation at break, and thermal stability than those of blends without MAH. The rheologic properties of the blends demonstrated the existence of processing. Finally, the dynamic thermal mechanical analysis results indicated that, with the addition of MAH, the compatibility between TPS and LLDPE in the blends was substantially improved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 686–695, 2004  相似文献   

7.
Isotactic polypropylene (PP) has been blended with poly(ethylene-co-methyl acrylate) (EMA) (75/25 wt/wt%) in a single-screw extruder. The compatibilizing effect of polypropylene grafted with maleic anhydride (PP-g-MAH) has been examined. The nonisothermal crystallization of the developed blends has been investigated using differential scanning calorimetry (DSC) and analyzed using Avrami, Tobin and Liu models. The thermal stability of the blends was assessed through thermogravimetric analysis (TGA). The tensile and impact properties, as well as the melt viscosity, have also been determined. The presence of rubber accelerates the crystallization of PP. The thermal stabilities of the blends are intermediate between those of their constituents. Tensile strength and modulus are reduced upon incorporation of EMA into PP, but ultimate elongation and impact strength are improved. The melt viscosity variation with shear rate for all the systems was typical of shear-thinning behavior. The compatibilizing agent has a pronounced effect on enhancing the thermal and mechanical properties of the blend.  相似文献   

8.
Nanocomposites based on cyclic olefin copolymer/linear low density polyethylene blends (COC/LLDPE) with various contents of three different modified organoclays (20A, 10A, and I28E) compatibilized with polyethylene grafted maleic anhydride (PEgMA) were prepared by met mixing. The influence of content and type of organoclay and compatibilizer on nanocomposite morphology, thermal, and mechanical properties as well as on oxygen and water vapour barrier properties was determined. X‐ray diffraction (XRD) and transmission microscopy (TEM) were used to investigate the clay dispersion, which showed a strong dependence on compatibilizer and type of organoclay. An exfoliated–intercalated morphology was obtained for compatibilized samples of C20A and I28E organoclays at 5 wt%. A less intercalated structure was obtained for samples with C10A. The exfoliated–intercalated structure was influenced both by the compatibilizer and the increase on the nanocomposite viscosity due to the COC incorporation as was determined by Rheological measurements. Mechanical analysis gave an evidence of increasing stiffness after nanoclay was added into COC/LLDPE blend matrix observing higher Young modulus for the compatibilized samples. A notorious decrease of Oxygen and Water vapour permeation rate was observed for COC/LLDPE blend films nanocomposites only when using C20A and I28E clays. These results can be useful in the design of sustainable flexible films for the packaging requirements of specific types of food. POLYM. COMPOS., 37:3167–3174, 2016. © 2015 Society of Plastics Engineers  相似文献   

9.
The compatibilization of HDPE/LDPE/LLDPE/PET blend during reactive extrusion, using compatibilizing agents, such as modified high, low, and lineal low density polyethylenes with maleic anhydride, was carried out. The agents were prepared in our laboratory by using a UV preirradiation process, containing different grafting and crosslinking degrees. The materials were compared with same maleic anhydride modified polyethylenes prepared by the traditional peroxide method in our laboratory and with a commercial maleic anhydride modified lineal low density polyethylene. The mechanical and thermal properties, as well as their morphology, were evaluated in the compatibilized blends and changes in crystallization phases recorded. The elongation at break and impact strengths increased with compatibilization level and morphology was markedly more homogenous. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 560–567, 2007  相似文献   

10.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

11.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

12.
Blends were made from linear low‐density polyethylene (LLDPE) and various amounts of soya powder. The soya powder content was varied from 5 to 20 wt%. Polyethylene‐g‐(maleic anhydride) (PE‐g‐MA) was used as a compatibilizer. Tensile strength and elongation at break (EB) decreased with increasing soya powder content. However, Young's modulus increased with the incorporation of soya powder. The addition of PE‐g‐MA as a compatibilizer increased the tensile strength, EB, and modulus of the blends. The interfacial adhesion between soya powder and LLDPE was improved by the incorporation of PE‐g‐MA, as demonstrated by scanning electron microscopy. Increasing the content of soya powder reduced the crystallinity of the LLDPE phase. The addition of PE‐g‐MA had no significant effect on melting temperature, but the degree of crystallinity of the LLDPE was increased. The thermal stability of the blends was determined by using thermogravimetric analysis. Thermal stability decreased with increasing soya powder loading. However, the addition of PE‐g‐MA slightly increased the thermal stability of LLDPE/(soya powder) blends. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
The reactive extrusion of maleic anhydride grafted polypropylene (PP‐g‐MAH) with ethylenediamine (EDA) as coupling agent is carried out in a corotating twin‐screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP‐g‐MAH is replaced by maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH) or linear low‐density polyethylene (LLDPE‐g‐MAH) to obtain hybrid long chain branched (LCB) polyolefins. Compared with the PP‐g‐MAH, PE‐g‐MAH, and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low‐frequency complex viscosity, broader relaxation spectra, significantly enhanced melt strength and strain‐hardening behaviors. The LCB polyolefins also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than their blends. Furthermore, supercritical carbon dioxide (scCO2) is constructively introduced in the reactive extrusion process. In the presence of scCO2, the motor current of the twin extruder is decreased and LCB polyolefins with lower melt flow rate (MFR), higher complex viscosity and increased tensile strength and modulus can be obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, and then facilitate the long chain branching reaction between anhydride group and primary amine group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
A three-step melt blending process was utilized to produce linear low-density polyethylene (LLDPE)/reclaimed rubber (RR)/carbon nanotube (CNT) nanocomposites in the presence of maleic anhydride grafted polyethylene as a compatibilizer. The effect of LLDPE/RR ratio and CNT content on the morphological, thermal, mechanical, and rheological behavior of these dynamically vulcanized LLDPE/RR nanocomposites were investigated. The morphological study showed that the RR was dispersed in the LLDPE matrix, and CNT addition led to an improved morphology as smaller RR sizes inside LLDPE were observed. The mechanical results revealed that increasing the RR content decreased the hardness, modulus of elasticity, and elongation at break while CNT improved the tensile properties and other mechanical properties. The differential scanning calorimeter analysis showed that the CNT improved the LLDPE crystallization by acting as nucleation agents. Dynamic mechanical analysis showed higher storage modulus and lower loss factor as compared to the neat blend due to mobility restrictions of the polymer chains induced by the presence of CNT. For the conditions studied, the electrical percolation threshold was found to occur at a very low CNT concentration (about 1 wt %) compared to the literature because of the specific structure produced leading to CNT residing in the LLDPE matrix and at the interface between both polymeric phases. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47795.  相似文献   

15.
Ethylene–vinyl alcohol copolymer (EVOH)/organoclay nanocomposites were prepared via a dynamic melt‐intercalation process. The effect of compatibilizers on the melt blending torque, intercalation level, and morphology of EVOH/organoclay systems was investigated. Maleic anhydride grafted ethylene vinyl acetate (EVA‐g‐ MA), or maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MA), were used to compatibilize EVOH with clay, at various concentrations (1, 5, and 10 wt %). Computer‐simulation techniques are used to predict structural properties and interactions of EVOH with compatibilizers in the presence and absence of clay. The simulation results strongly support the experimental findings and their interpretation. X‐ray diffraction shows enhanced intercalation within the galleries when the compatibilizers were added. Interestingly, results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems. Thermal analysis shows that, upon increasing the compatibilizer content, lower crystallinity levels result, until at a certain compatibilizer content no crystallization is taking place. Significantly higher mixing viscosity levels were obtained for the EVOH/organoclay blends compared with the neat EVOH polymer. The storage modulus was higher compared with the uncompatibilized EVOH/organoclay blend in the presence of EVA‐g‐MA compatibilizer (at all concentrations), and only at low contents of LLDPE‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2060–2066, 2005  相似文献   

16.
The effects of the blend composition and compatibilization on the morphology of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were studied. The blends showed dispersed/matrix and cocontinuous phase morphologies that depended on the composition. The blends had a cocontinuous morphology at an EVA concentration of 40–60%. The addition of the compatibilizer first decreased the domain size of the dispersed phase, which then leveled off. Two types of compatibilizers were added to the polymer/polymer interface: linear low‐density polyethylene‐g‐maleic anhydride and LLDPE‐g phenolic resin. Noolandi's theory was in agreement with the experimental data. The conformation of the compatibilizer at the blend interface could be predicted by the calculation of the area occupied by the compatibilizer molecule at the interface. The effects of the blend ratio and compatibilization on the dynamic mechanical properties of the blends were analyzed from ?60°C to +35°C. The experiments were performed over a series of frequencies. The area under the curve of the loss modulus versus the temperature was higher than the values obtained by group contribution analysis. The loss tangent curve showed a peak corresponding to the glass transition of EVA, indicating the incompatibility of the blend system. The damping characteristics of the blends increased with increasing EVA content because of the decrease in the crystalline volume of the system. Attempts were made to correlate the observed viscoelastic properties of the blends with the morphology. Various composite models were used to model the dynamic mechanical data. Compatibilization increased the storage modulus of the system because of the fine dispersion of EVA domains in the LLDPE matrix, which provided increased interfacial interaction. Better compatibilization was effected at a 0.5–1% loading of the compatibilizer. This was in full agreement with the dynamic mechanical spectroscopy data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4526–4538, 2006  相似文献   

17.
Dynamically vulcanized thermoplastic elastomers nanocomposites (TPV nanocomposites) based on linear low density polyethylene (LLDPE)/reclaimed rubber/organoclay were prepared via one‐step melt blending process. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as a compatibilizing agent. The effects of reclaimed rubber content (10, 30, and 50 wt %), nanoclay content (3, 5, and 7 wt %), and PE‐g‐MA on the microstructure, thermal behavior, mechanical properties, and rheological behavior of the nanocomposites were studied. The TPV nanocomposites were characterized by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimeter, mechanical properties, and rheometry in small amplitude oscillatory shear. SEM photomicrographs of the etched samples showed that the elastomer particles were dispersed homogeneously throughout the polyethylene matrix and the size of rubber particles was reduced with introduction of the organoclay particles and compatibilizer. The effects of different nanoclay contents, different rubber contents, and compatibilizer on mechanical properties were investigated. Increasing the amount of nanoclay content and adding the compatibilizer result in an improvement of the tensile modulus of the TPV nanocomposite samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Using the extrusion blown film process, we obtained linear low density polyethylene (LLDPE)/ethylenevinyl alcohol copolymer (EVOH) blends with an improved barrier property by generating a laminar structure of the dispersed phase in the matrix phase. This laminar morphology induced by drawing and blowing was found to result in a significant decrease in toluene permeability with only 10 wt% EVOH. Effects of compatibilizer content and processing parameters such as blending sequence, screw configuration, and stretch ratio on the toluene permeability and morphology of the blends were investigated. It was revealed that the optimum amount of compatibilizer, maleic anhydride grafted LLDPE, should be used to improve the barrier property of the LLDPE/EVOH blends with a well developed laminar structure. The blending sequence had a significant influence on the permeability of the blends. The blend films exhibited a more pronounced laminar structure when all blend components were simultaneously melt blended in a single screw extruder. In addition, the screw configuration designed to impart a low shear stress and the balanced stretching in the machine and transverse directions were more favorable processing conditions in obtaining high barrier blends.  相似文献   

19.
Epoxidized natural rubber (ENR) with a level of epoxide groups of 20 mol % was prepared via the performic epoxidation method. It was then used to blend with high‐density polyethylene (HDPE) at various blend ratios. Three types of blend compatibilizers were prepared. These included a graft copolymer of HDPE and maleic anhydride (MA; i.e., HDPE‐g‐MA) and two types of phenolic modified HDPEs using phenolic resins SP‐1045 and HRJ‐10518 (i.e., PhSP‐PE and PhHRJ‐PE), respectively. We found that the blend with compatibilizer exhibited superior tensile strength, hardness, and set properties to that of the blend without compatibilizer. The ENR and HDPE interaction via the link of compatibilizer molecules was the polar functional groups of the compatibilizer with the oxirane groups in the ENR molecules. Also, another end of the compatibilizer molecules (i.e., HDPE segments) was compatibilizing with the HDPE molecules in the blend components. The blend with compatibilizer also showed smaller phase morphology than the blend without compatibilizer. Among the three types of the blend compatibilizer, HDPE‐g‐MA provided the blend with the greatest strength and hardness properties but the lowest set properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The melt rheological properties of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were investigated with special reference to the effect of blend ratio, temperature, shear rate, compatibilization, and dynamic vulcanization. The melt viscosity of the blends determined with a capillary rheometer is found to decrease with an increase of shear rate, which is an indication of pseudoplastic behavior. The viscosity of the blend was found to be a nonadditive function of the viscosities of the component polymers. A negative deviation was observed because of the interlayer slip between the polar EVA and the nonpolar LLDPE phases. The melt viscosity of these blends decreases with the increased concentration of EVA. The morphology of the extrudate of the blends at different shear rates and blend ratios was studied and the size and distribution of the domains were examined by scanning electron microscopy. The morphology was found to depend on shear rate and blend ratio. Compatibilization of the blends with phenolic‐ and maleic‐modified LLDPE increased the melt viscosity at lower wt % of compatibilizer and then leveled off. Dynamic vulcanization is found to increase the melt viscosity at a lower concentration of DCP. The effect of temperature on melt viscosity of the blends was also studied. Finally, attempts were made to correlate the experimental data on melt viscosity and cocontinuity region with different theoretical models. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3210–3225, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号