首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa·m^1/2, which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.  相似文献   

2.
5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.  相似文献   

3.
Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.  相似文献   

4.
1 INTRODUCTIONThe use of inert or non-consumable anodes forreplacement of consumable carbon anodes in Hall-H啨roult electrolysis cells for the production of alu-minum has been a technical and commercial goalfor many decades .In the present process ,consumable carbon an-odes are used,andthe anode product is CO2. Withaninert anode ,the cell reaction will be :Al2O3=2Al +23O2(1)The basic requirements for aninert anode are :1) to exhibit a lowcorrosion rate in the high tem-perature melts an…  相似文献   

5.
xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe2O4 and Ba2Fe2O5 has an active effect on electric conductivities of xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.  相似文献   

6.
Sintering of the NiFe2O4-10NiO/xNi Cermet   总被引:1,自引:0,他引:1  
The sintering behavior of NiFe2 O4-10NiO/xNi cermet which was used as the most prospective inert anode materials for aluminum electrolysis was studied by examining the effects of raw powder particle size, sintering temperature, and the contents of Ni. The results show that fine particle size enables the powder to have high driving force for sintering. High temperature is beneficial to densification, but the ultra-high temperature does harm to the improvement of the density. The samples of NiFe2O4-10NiO/SNi has the highest relative density of 97.28 % when it is sintered at 1 350 ℃, but it decreases to 95.23 % when sintered at 1 400 ℃. Low addition of Ni has a great help to the sintering of NiFe2 O4-10NiO matrix. When the samples are sintered at 1 350 ℃ and the mass fraction of Ni is 5%, the highest relative density is gained, but the density decreases with the further increase of Ni contents. The low density of the sintered samples of NiFe2 O4-10NiO/17Ni is attributed to the high volume fraction of pores.  相似文献   

7.
Based on the FEA software ANSYS,a model was developed to simulate the thermal stress distribution of inert anode.In order to reduce its thermal stress,the effect of some parameters on thermal stress distribution was investigated,including the temperature of electrolyte,the current,the anode cathode distance,the anode immersion depth,the surrounding temperature and the convection coefficient between anode and circumstance.The results show that there exists a large axial tensile stress near the tangent interface between the anode and bath,which is the major cause of anode breaking.Increasing the temperature of electrolyte or the anode immersion depth will deteriorate the stress distribution of inert anode.When the bath temperature increases from 750 to 970 ℃,the maximal value and absolute minimal value of the 1st principal stress increase by 29.7% and 29.6%,respectively.When the anode immersion depth is changed from 1 to 10 cm,the maximal value and absolute minimal value of the 1st principal stress increase by 52.1% and 65.0%,respectively.The effects of other parameters on stress distribution are not significant.  相似文献   

8.
The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.  相似文献   

9.
1 INTRODUCTIONThere are many disadvantages in the presentaluminumelectrolysis with carbon anode ,such assevere energy consumption,carbon wasting,envi-ronmental pollution and so on.Inert electrode sys-tem can overcome these disadvantages[1 3]. Re-cently ,the researches of the inert anode materialshave mainly been concentrated on alloys[4]and cer-met materials[5 ,6]. NiFe2O4based cermets , whichpossess not only high electrical conductivity ofmetal but also good corrosion resistance of cera…  相似文献   

10.
The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatic pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al2O3 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which...  相似文献   

11.
ZrO2 was added into CaO-Al2O3-SiO2 glass-ceramics and the effect of ZrO2 on sintering and crystallization of CaO-Al2O3-SiO2 glass ceramics was investigated. The results show that the sintering shrinkage ratio of glass particles decreases with the increase of the content of ZrO2. ZrO2 has an unfavourable effect on sintering shrinkage ratio of glass particles. The sintering shrinkage ratio of glass particles increases with the increase of sintering temperature. The increase of sintering temperature favors the decrease of the liquid phase viscosity of glass particles. ZrO2 has little effect on crystallization of main crystalline phase (β-wollastonite). However, it promotes the crystallization at relatively low temperature.  相似文献   

12.
The electrolysis expansion of semigraphitic cathode in [K3AlF6/Na3AlF6]-AlF3-Al2O3 bath system was tested by self-made modified Rapoport apparatus. A mathematical model was introduced to discuss the effects of α CR (cryolite ratio) and β KR (elpasolite content divided by the total amount of elpasolite and sodium cryolite) on performance of cathode electrolysis expansion. The results show that K and Na (potassium and sodium) penetrate into the cathode together and have an obvious influence on the performance of cathode electrolysis expansion. The electrolysis expansion and K/Na penetration rate increase with the increase of α CR. When α CR=1.9 and β KR=0.5, the electrolysis expansion is the highest, which is 3.95%; and when α CR=1.4 and β KR=0.1, the electrolysis expansion is the lowest, which is 1.28%. But the effect of β KR is correlative with α CR. When α CR=1.6 and 1.9, with the increase of β KR, the electrolysis expansion and K/Na penetration rate increase. However, when α CR=1.4, the electrolysis expansion and K/Na penetration rate firstly increase and then decrease with the increase of β KR. Foundation item: Project (2005CB623703) supported by the Major State Basic Research and Development Program of China; Project (2008AA030502) supported by the National High-Tech Research and Development Program of China  相似文献   

13.
4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2O4 cermets decreases with increasing temperature, and has a turning point at 590 °C, which is similar to that of NiFe2O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4.25Cu-0.75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1200 °C to 1300 °C, the relative density increases from 89.86% to 95.33%, and the resistivity at 960 °C decreases from 0.11 Ω · cm to 0.03 Ω · cm, respectively. When the metallic elements are added with the mixed powders of Cu and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obtained. The relative density and resistivity at 960 °C are 90.23% and 0.04 Ω · cm respectively for the cermet samples sintered at 1200 °C for 2 h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders. Foundation item: Project (G1999064903) supported by the National Key Fundamental Research and Development Program of China; project(2001AA335013) supported by the National High Technology Research and Development Program of China; project (50204014) supported by the National Natural Science Foundation of China  相似文献   

14.
The nanocrystalline Bi2O3-Y2O3 solid electrolyte material was synthesized by pressureless reactive sintering process with Bi2O3 and Y2O3 nano mixed powder as raw materials, which was prepared by a chemical coprecipitation process. The study on the behavior of nano δ-Bi2O3 formation and its grain growth showed that the solid solution reaction of Y2O3 and β-Bi2O3 to form δ-Bi2O3occurs mainly in the initial stage of sintering process, and nano δ-Bi2O3 crystal grains grow approximately following the rule of paracurve ((D-D0)2=K.t) during sintering process. After sintered at 600℃ for 2 h, the samples could reach above 96% in relative density and have dense microstructure with few remaining pores, the δ-Bi2O3 grains are less than 100 nm in size.  相似文献   

15.
The effects of contents of AlF3 and Al2O3, and temperature on electrical conductivity of (Na3AlF6-40%K3AlF6)- AlF3-Al2O3 were studied by continuously varying cell censtant (CVCC) technique. The results show that the conductivities of melts increase with the increase of temperature, but by different extents. Every increasing 10 ℃ results in an increase of 1.85 × 10^-2, 1.86× 10^-2, 1.89 × 10^-2 and 2.20 × 10^-2 S/cm in conductivity for the (Na3AlF6-40%K3AlF6)-AlF3 melts containing 0%, 20%, 24%, and 30% AlF3, respectively. An increase of every 10 ℃ in temperature results an increase about 1.89× 10^-2, 1.94 × 10^-2, 1.95 × 10^-2, 1.99× 10^-2 and 2.10× 10^-2 S/cm for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts containing 0%, 1%, 2%, 3% and 4% Al2O3, respectively. The activation energy of conductance was calculated based on Arrhenius equation. Every increasing 1% of AlF3 results in a decrease of 0.019 and 0.020 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3 melts at 900 and 1 000 ℃, respectively. Every increase of 1% Al2O3 results in a decrease of 0.07 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts. The activation energy of conductance increases with the increase in content of AlF3 and Al2O3.  相似文献   

16.
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900 °C, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of ɛ r=24.5, Q×f =24 622 GHz, τ f=4.2×10−6 °C−1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900 °C for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.  相似文献   

17.
LiMn2O4 powder as a cathode materials for rechargeable lithium-ion batteries was prepared by solid-state reaction from LitCO3 and electrolytic MnOz at different sintering periods (2, 6, 18, and 32 h). X-ray diffraction (XRD) patterns of the prepared samples are identified as the spinel structure with a space group of Fd3 m. The lattice parameters almost remain the same as the sintering periods increase. The sample with a sintering period of 32 h shows good cycling performance at both low and nigh current densities, and also elevated temperature. It is believed that the excellent electrochemical behavior of this sample results from its good crystallinity and large grain size compared with other samples. Different electrochemical measurements were conducted to investigate the electrochemical properties of spinel LiMn204. 2008 University of Science and Technology Beijing. All rights reserved.  相似文献   

18.
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction. X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3 m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spec-troscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.  相似文献   

19.
Using powder-sintering method,SiO2-Al2O3-CaO-ZnO-R2O porous glass-ceramics were produced for analysis. Five samples with different SiO2 /CaO ratios were used in the research. The mechanical properties, microstructures and textures of porous glass-ceramics are investigated by using differential thermogravimetric analysis/differential thermal analysis ( TGA/SDTA) ,X-ray diffraction ( XRD) ,and scanning electron microsco- py ( SEM) . The activity energy of crystallization ( E) and crystallization kinetics parameter ( k) were calculated based on the modified JMA equation. The Avrami parameter n was obtained according to Augis-Bennett function. The results show that the k value of No. 1 sample ( SiO2 /CaO = 61∶ 18) is the largest among all samples, which tends to crystallize more easily,and crystallization processes of all samples are observed bulk crystallization. The main crystal phase observed is parawollastonite ( clinorhombic system) with puncheon shape. Poreforming agents decomposed at 100 - 500 ℃ form a large number of closed pores with micron dimension and several semi-open pores distribute uniformly in the glass-ceramics matrix. This work may be expected to be favorable for industrial scale applications of porous glass-ceramics in the field of building thermal insulation.  相似文献   

20.
ZnO varistors are prepared using the 0.1–0.3 mm ZnO powders. The effects of the sintering temperature, contents of In2O3 doping on the non-linear properties of ZnO varistors have been investigated. The results show that this kind of ZnO powder has a high sintering activity. It is suitable for making the low voltage varistors. The V c decreases with the increase of sintered temperature, when the In2O3 content is fixed (0.98%, mass fraction), and increases with the increase of In2O3 contents when the temperature is steady. Project supported by the Nonferrous Metals Industry Corporation of China Synopsis of the first anthor Zhao Ruirong, born in Jan. 1935, majoring in nonferrous metal metallurgy and products exploition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号