首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The AMP-activated protein kinase (AMPK) is a member of a growing family of related kinases, including the SNF1 complex in yeast, which respond to nutritional stress. AMPK is a heterotrimeric complex of a catalytic subunit (alpha) and two regulatory subunits (beta and gamma), and proteins related to all three subunits have been identified in the SNF1 complex. We have used the two-hybrid system in order to identify proteins interacting with the catalytic subunit (alpha2). Using this approach, we have isolated a novel AMPKbeta isoform, which we designate AMPKbeta2. The N-terminal region of beta2 differs significantly from that of the previously characterized isoform (beta1), suggesting that this region could play a role in isoform-specific AMPK activity. Comparison of the C-terminal sequences of beta1 and beta2 with their related proteins in yeast identifies two highly conserved regions predicted to be involved in binding of the alpha and gamma subunits. The expression of beta1 and beta2 was examined in a number of tissues, revealing that the beta1 isoform is highly expressed in liver with low expression in skeletal muscle, whereas the opposite pattern is observed for the beta2 isoform. These results suggest that the beta isoforms have tissue-specific roles, which may involve altered responses to upstream signaling and/or downstream targeting of the AMPK complex.  相似文献   

2.
The AMP-activated protein kinase is a heterotrimeric enzyme, important in cellular adaptation to the stress of nutrient starvation, hypoxia, increased ATP utilization, or heat shock. This mammalian enzyme is composed of a catalytic alpha subunit and noncatalytic beta and gamma subunits and is a member of a larger protein kinase family that includes the SNF1 kinase of Saccharomyces cerevisiae. In the present study, we have identified by truncation and site-directed mutagenesis several functional domains of the alpha1 catalytic subunit, which modulate its activity, subunit association, and protein turnover. C-terminal truncation of the 548-amino acid (aa) wild-type alpha1 protein to aa 312 or 392 abolishes the binding of the beta/gamma subunits and dramatically increases protein expression. The full-length wild-type alpha1 subunit is only minimally active in the absence of co-expressed beta/gamma, and alpha1(1-392) likewise has little activity. Further truncation to aa 312, however, is associated with a large increase in enzyme specific activity, thus revealing an autoinhibitory sequence between aa 313 and 392. alpha-1(1-312) still requires the phosphorylation of the activation loop Thr-172 for enzyme activity, yet is now independent of the allosteric activator, AMP. The increased levels of protein expression on transient transfection of either truncated alpha subunit cDNA are because of a decrease in enzyme turnover by pulse-chase analysis. Taken together, these data indicate that the alpha1 subunit of AMP-activated protein kinase contains several features that determine enzyme activity and stability. A constitutively active form of the kinase that does not require participation by the noncatalytic subunits provides a unique reagent for exploring the functions of AMP-activated protein kinase.  相似文献   

3.
The AMP-activated protein kinase (AMPK) is a heterotrimeric complex composed of a catalytic subunit (alpha) and two regulatory subunits (beta and gamma). Two isoforms of the catalytic subunit (alpha1 and alpha2) have been identified. We show here that the alpha1- and alpha2-containing complexes contribute approximately equally to total AMPK activity in rat liver. Furthermore, expression of alpha1 or alpha2 with beta and gamma in mammalian cells demonstrates that both complexes have equal specific activity measured with the SAMS peptide. Using variant peptides, however, we show that alpha1 and alpha2 exhibit slightly different substrate preferences, which suggest that the two isoforms could play different physiological roles within the cell.  相似文献   

4.
alpha 1, beta 1, and gamma 2S gamma-aminobutyric acid (GABA) type A receptor (GABAR) subunit cDNAs were transiently expressed in derivative cell lines of mouse L929 fibroblasts, which possessed different levels of the catalytic subunit of cAMP-dependent protein kinase (PKA). These cell lines included L929 (intermediate levels of kinase), C alpha 12 (elevated levels of kinase), and RAB10 (low levels of kinase) cells. Pharmacological analysis of GABA-evoked whole-cell currents revealed that, compared with expression in L929 and RAB10 cells, expression of alpha 1 beta 1 gamma 2S GABARs in C alpha 12 cells produced a selective enhancement of single whole-cell current amplitudes. No other pharmacological properties (Hill slope, EC50, or diazepam sensitivity) of the expressed alpha 1 beta 1 gamma 2S GABARs were modified. The GABAR current enhancement in C alpha 12 cells was blocked by substitution of a beta 1 subunit mutated at the PKA consensus phosphorylation site, Ser409 [beta 1(S409A)], for the wild-type beta subunit. Interestingly, enhancement was specific for GABARs containing all three subunits, because it was not seen after expression of alpha 1 beta 1 or alpha 1 beta 1 (S409A) GABAR subunit combinations. Single-channel conductance and gating properties were not different for alpha 1 beta 1 gamma 2S or alpha 1 beta 1 (S409A) gamma 2S GABARs expressed in each cell line, suggesting that PKA did not enhance whole-cell currents by altering these properties of GABARs. These results suggested that unlike acute application of PKA, which has been shown to produce a decrease in GABAR current, chronic elevation of PKA activity can result in enhancement of GABAR currents. More importantly, this effect occurred only with GABARs composed of alpha 1 beta 1 gamma 2S subunits and not alpha 1 beta 1 subunits and was mediated by a single amino acid residue (Ser409) of the beta 1 subunit.  相似文献   

5.
Nicotinic acetylcholine receptors (AChRs) are activated by ACh binding to two sites located on different alpha subunits. The two alpha subunits, alpha gamma and alpha delta, are distinguished by their interface with gamma and delta subunits. We have characterized the formation of the ACh binding sites and found, contrary to the current model, that the sites form at different times and in a set order. The first site forms on alpha gamma subunits during the process of subunit assembly. Our data are consistent with the appearance of this site on alpha beta gamma delta subunit tetramers soon after the site for the competitive antagonist alpha-bungarotoxin has formed and delta subunits have assembled with alpha beta gamma trimers. The second site is located on alpha delta subunits and forms after AChR subunits have assembled into alpha2 beta gamma delta pentamers. By determining the order in which the ACh binding sites form, we have also identified the sites in which the delta and second alpha subunits associate during subunit assembly.  相似文献   

6.
Although the G protein betagamma dimer is an important mediator in cell signaling, the mechanisms regulating its activity have not been widely investigated. The gamma12 subunit is a known substrate for protein kinase C, suggesting phosphorylation as a potential regulatory mechanism. Therefore, recombinant beta1 gamma12 dimers were overexpressed using the baculovirus/Sf9 insect cell system, purified, and phosphorylated stoichiometrically with protein kinase C alpha. Their ability to support coupling of the Gi1 alpha subunit to the A1 adenosine receptor and to activate type II adenylyl cyclase or phospholipase C-beta was examined. Phosphorylation of the beta1 gamma12 dimer increased its potency in the receptor coupling assay from 6.4 to 1 nM, changed the Kact for stimulation of type II adenylyl cyclase from 14 to 37 nM, and decreased its maximal efficacy by 50%. In contrast, phosphorylation of the dimer had no effect on its ability to activate phospholipase C-beta. The native beta1gamma10 dimer, which has 4 similar amino acids in the phosphorylation site at the N terminus, was not phosphorylated by protein kinase C alpha. Creation of a phosphorylation site in the N terminus of the protein (Gly4 --> Lys) resulted in a beta1 gamma10G4K dimer which could be phosphorylated. The activities of this beta gamma dimer were similar to those of the phosphorylated beta1 gamma12 dimer. Thus, phosphorylation of the beta1 gamma12 dimer on the gamma subunit with protein kinase C alpha regulates its activity in an effector-specific fashion. Because the gamma12 subunit is widely expressed, phosphorylation may be an important mechanism for integration of the multiple signals generated by receptor activation.  相似文献   

7.
The pyruvate dehydrogenase complex (PDC) plays a key role in the anaerobic metabolism of the parasitic nematode Ascaris suum. Two isoforms of the alpha-subunit of pyruvate dehydrogenase (E1) have been identified: alpha I is most abundant in anaerobic adult muscle and alpha II in aerobic larvae. Both isoforms have been expressed as alpha 2 beta 2 tetramers with a muscle-specific beta-subunit, purified to apparent homogeneity, reconstituted with E1-deficient adult A. suum muscle PDC, and assayed for PDC and E1 kinase activity. Recombinant alpha II is a poor substrate for the adult E1 kinase, but its stoichiometry of phosphorylation/inactivation is similar to that reported for the human E1. Initially, inactivation parallels the incorporation of about 1 mol 32P/mol E1 and at maximal phosphorylation about 2.4 32P/mol E1 is incorporated. In contrast, recombinant alpha I (r alpha I) is phosphorylated rapidly, and substantially more phosphorylation accompanies inactivation. To examine this altered pattern of phosphorylation, the two phosphorylation sites in each E1 alpha subunit of the r alpha I (site 1 and site 2) were changed either individually or together from Ser to Ala by site-directed mutagenesis. Site 1 was phosphorylated more rapidly than site 2, but the phosphorylation of either site resulted in inactivation, and the phosphorylation of only a single E1 alpha subunit of the tetramer was necessary for inactivation. However, both E1 alpha subunits of the tetramer were phosphorylated, based on the incorporation of about 3.5 mol 32P/mol E1 at maximal phosphorylation and the altered mobility of most of the E1 alpha subunits during SDS-PAGE. These observations suggest that the regulation of both E1 isoforms is modified to maintain PDC activity during the transition to anaerobiosis.  相似文献   

8.
9.
The heterotrimeric G proteins are often regarded functionally as a heterodimer, consisting of a guanine nucleotide-binding alpha subunit and a beta gamma subunit complex. Since the tightly associated beta gamma subunit complex can be separated only under denaturing conditions, studies aimed at determining the individual contributions of the beta and gamma subunits in terms of binding to the various alpha subunits, interacting with receptors, and regulating effectors, have not been possible. To circumvent this problem, we have used baculovirus-infected cells to direct the individual expression of the beta 1 and gamma 2 subunits. Application of extracts from baculovirus-infected cells to an alpha subunit of G protein (G(o) alpha)-affinity matrix resulted in the selective retention and AMF-specific elution of the expressed gamma 2 subunit, but not the expressed beta 1 subunit. Overall, these and other data provide the first evidence of a direct association between the gamma and alpha subunits, which is dependent on prenylation of gamma. The apparent direct association between the gamma and alpha subunits was further probed by limited trypsin proteolysis. Upon addition of trypsin, the G(o) alpha subunit was rapidly cleaved to a 24-kDa fragment. However, in the presence of the purified gamma 2 subunit, trypsin cleavage of the G(o) alpha subunit was completely prevented. This demonstration of a direct association between the gamma and alpha subunits is particularly intriguing in light of the increasingly large number of known alpha, beta, and gamma subunits, which raises important questions regarding the assembly of these subunits into functionally distinct G proteins. Thus, a direct association between the gamma and alpha subunits, which exhibit the greatest structural diversity, may provide the basis for the selective assembly of these subunits into G proteins with functional diversity.  相似文献   

10.
Cyclic GMP phosphodiesterase, a key enzyme in phototransduction, is composed of P alpha beta and two P gamma subunits. Interaction of P gamma with P alpha beta or with the alpha subunit (T alpha) of transducin is crucial for the regulation of cGMP phosphodiesterase in retinal photoreceptors. Here we have investigated phosphorylation of P gamma by cAMP-dependent protein kinase and its functional effect on the P gamma interaction with P alpha beta or T alpha in vitro. P gamma, but not P gamma complexed with T alpha (both GTP and GDP forms), is phosphorylated. Measurement of 32P radioactivity in phosphorylated P gamma, analysis of phosphorylated P gamma by laser mass spectrometry, identification of phosphoamino acid, and phosphorylation of mutant forms of P gamma indicate that only threonine 35 in P gamma is phosphorylated. Phosphorylation of P gamma mutants also reveals that the C and N terminals of P gamma which are required for the regulation of P alpha beta functions are not involved in the P gamma phosphorylation but that arginine 33, which is ADP-ribosylated by an endogenous ADP-ribosyltransferase, is required for the phosphorylation. Phosphorylated P gamma has a higher inhibitory activity for trypsin-activated cGMP phosphodiesterase than nonphosphorylated P gamma, indicating that the P gamma-P alpha beta interaction is affected by P gamma phosphorylation. Nonphosphorylated P gamma inhibits both the GTPase activity of T alpha and the binding of a hydrolysis-resistant GTP analogue to T alpha, while P gamma phosphorylation reduces these inhibitory activities. These observations suggest that a P gamma domain containing threonine 35 is involved in the P gamma-T alpha interaction, and P gamma phosphorylation regulates the P gamma-T alpha interaction. Our observation suggests that P gamma phosphorylation by cAMP-dependent protein kinase may function for the regulation of phototransduction in vertebrate rod photoreceptors.  相似文献   

11.
The two binding sites in the pentameric nicotinic acetylcholine receptor of subunit composition alpha2 beta gamma delta are formed by nonequivalent alpha-gamma and alpha-delta subunit interfaces, which produce site selectivity in the binding of agonists and antagonists. We show by sedimentation analysis that 125I-alpha-conotoxin M1 binds with high affinity to the alpha-delta subunit dimers, but not to alpha-gamma dimers, nor to alpha, gamma, and delta monomers, a finding consistent with alpha-conotoxin M1 selectivity for the alpha delta interface in the intact receptor measured by competition against alpha-bungarotoxin binding. We also extend previous identification of alpha-conotoxin M1 determinants in the gamma and delta subunits to the alpha subunit interface by mutagenesis of conserved residues in the alpha subunit. Most mutations of the alpha subunit affect affinity similarly at the two sites, but Tyr93Phe, Val188Lys, Tyr190Thr, Tyr198Thr, and Asp152Asn affect affinity in a site-selective manner. Mutant cycle analysis reveals only weak or no interactions between mutant alpha and non-alpha subunits, indicating that side chains of the alpha subunit do not interact with those of the gamma or delta subunits in stabilizing alpha-conotoxin M1. The overall findings suggest different binding configurations of alpha-conotoxin M1 at the alpha-delta and alpha-gamma binding interfaces.  相似文献   

12.
We have demonstrated previously that the GTP-binding protein gamma12 subunit is a selective substrate for phosphorylation by protein kinase C among various gamma subunits in vitro, and that a serine residue in the N-terminal region is involved. In the present study, we first determined that the site of phosphorylation was Ser1 with antibodies developed against two N-terminal peptides containing phosphorylated Ser1 and Ser2, respectively. Using an antibody recognizing phosphorylated gamma12 and Swiss 3T3 cells rich in this protein, gamma12 was found to be phosphorylated by stimulation of quiescent cells with various reagents, such as phorbol 12-myristate 13-acetate (PMA), NaF, fetal calf serum, lysophosphatidic acid, endothelin, and growth factors. Pertussis toxin completely and partially prevented phosphorylation of gamma12 induced by lysophosphatidic acid and fetal calf serum and by endothelin, respectively, suggesting a contribution of G(i/o). Phosphorylation of gamma12 was limited when cells were stimulated by a single reagent, even with PMA, a strong activator of protein kinase C, whereas simultaneous stimulation with lysophosphatidic acid and either PMA or platelet-derived growth factor induced a synergistic increase of phosphorylation, suggesting physiological roles for GTP-binding proteins and protein kinase C in combination. Phosphorylated gamma12 was also detected in various tissues of untreated rats. Its decrease by pertussis toxin treatment also suggested the involvement of G(i/o) in vivo.  相似文献   

13.
Propofol (2,6-diisopropylphenol), an intravenous general anesthetic in active clinical use today, potentiates the action of gamma-aminobutyric acid (GABA) at the type-A receptor and also directly induces current in the absence of GABA. We expressed different combinations of murine GABA(A) receptor alpha1, beta3 and gamma2 subunits in Xenopus oocytes to investigate the subunit dependence of propofol potentiation of pentobarbital-induced current. Pentobarbital induces current in all beta3-subunit-containing receptors, whereas current gating by GABA requires the presence of both alpha1 and beta3 subunits. Therefore, pentobarbital rather than GABA was used to induce current in order to separate the subunit dependence of current gating from the subunit dependence of potentiating action of propofol. alpha1beta3gamma2, alpha1beta3, beta3gamma2, or beta3 subunit combinations all responded to pentobarbital in a dose-dependent manner. True potentiation was defined as the current magnitude to simultaneous application of pentobarbital and propofol exceeding the additive responses to individual drug applications. A dose-dependent propofol potentiation of pentobarbital-induced current was observed in oocytes injected with alpha1beta3 or alpha1beta3gamma2 but not in beta3gamma2 or beta3 subunits, suggesting that the alpha1 subunit was necessary for this modulatory action of propofol. Further examination of the propofol potentiation in chimeras between the alpha1 and beta3 subunits showed that the extracellular amino-terminal half of the alpha1 subunit was sufficient to support propofol potentiation. The different requirements of the receptor structure for the agonistic (gating) and the potentiating actions suggest that these two actions of propofol are distinct processes mediated through its action at distinct sites.  相似文献   

14.
The G protein beta5 subunit differs substantially in amino acid sequence from the other known beta subunits suggesting that beta gamma dimers containing this protein may play specialized roles in cell signaling. To examine the functional properties of the beta5 subunit, recombinant beta5 gamma2 dimers were purified from baculovirus-infected Sf9 insect cells using a strategy based on two affinity tags (hexahistidine and FLAG) engineered into the N terminus of the gamma2 subunit (gamma2HF). The function of the pure beta5 gamma2HF dimers was examined in three assays: activation of pure phospholipase C-beta in lipid vesicles; activation of recombinant, type II adenylyl cyclase expressed in Sf9 cell membranes; and coupling of alpha subunits to the endothelin B (ETB) and M1 muscarinic receptors. In each case, the efficacy of the beta5 gamma2HF dimer was compared with that of the beta1 gamma2HF dimer, which has demonstrated activity in these assays. The beta5 gamma2HF dimer activated phospholipase C-beta with a potency and efficacy similar to that of beta1 gamma2 or beta1 gamma2HF; however, it was markedly less effective than the beta1 gamma2HF or beta1 gamma2 dimer in its ability to activate type II adenylyl cyclase (EC50 of approximately 700 nM versus 25 nM). Both the beta5 gamma2HF and the beta1 gamma2HF dimers supported coupling of M1 muscarinic receptors to the Gq alpha subunit. The ETB receptor coupled effectively to both the Gi and Gq alpha subunits in the presence of the beta1 gamma2HF dimer. In contrast, the beta5 gamma2HF dimer only supported coupling of the Gq alpha subunits to the ETB receptor and did not support coupling of the Gi alpha subunit. These results suggest that the beta5 gamma2HF dimer binds selectively to Gq alpha subunits and does not activate the same set of effectors as dimers containing the beta1 subunit. Overall, the data support a specialized role for the beta5 subunit in cell signaling.  相似文献   

15.
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.  相似文献   

16.
The gamma-aminobutyric acid type A (GABAA) receptor is a transmitter-gated ion channel mediating the majority of fast inhibitory synaptic transmission within the brain. The receptor is a pentameric assembly of subunits drawn from multiple classes (alpha1-6, beta1-3, gamma1-3, delta1, and epsilon1). Positive allosteric modulation of GABAA receptor activity by general anesthetics represents one logical mechanism for central nervous system depression. The ability of the intravenous general anesthetic etomidate to modulate and activate GABAA receptors is uniquely dependent upon the beta subunit subtype present within the receptor. Receptors containing beta2- or beta3-, but not beta1 subunits, are highly sensitive to the agent. Here, chimeric beta1/beta2 subunits coexpressed in Xenopus laevis oocytes with human alpha6 and gamma2 subunits identified a region distal to the extracellular N-terminal domain as a determinant of the selectivity of etomidate. The mutation of an amino acid (Asn-289) present within the channel domain of the beta3 subunit to Ser (the homologous residue in beta1), strongly suppressed the GABA-modulatory and GABA-mimetic effects of etomidate. The replacement of the beta1 subunit Ser-290 by Asn produced the converse effect. When applied intracellularly to mouse L(tk-) cells stably expressing the alpha6beta3gamma2 subunit combination, etomidate was inert. Hence, the effects of a clinically utilized general anesthetic upon a physiologically relevant target protein are dramatically influenced by a single amino acid. Together with the lack of effect of intracellular etomidate, the data argue against a unitary, lipid-based theory of anesthesia.  相似文献   

17.
To examine the role of phosphorylation of the elongation factor eEF-1 in regulation of translation, 32P-labeled 3T3-L1 cells were deprived of serum, then incubated in the presence or absence of 10 nM insulin for 15 min. eEF-1 was purified by affinity chromatography on tRNA-Sepharose and shown to be phosphorylated on the alpha, beta and delta subunits. Phosphorylation of eEF-1alpha was stimulated sixfold in response to insulin, beta was stimulated fourfold and delta was threefold. The rate of elongation assayed with eEF-1 from insulin-stimulated cells was over twofold greater than with eEF-1 from serum-deprived cells. When eEF-1 from insulin-treated cells was subjected to two-dimensional tryptic phosphopeptide mapping, nine phosphopeptides were obtained with the alpha subunit, one with the beta subunit and three with the delta subunit. When compared with phosphopeptide maps of alpha, beta and delta subunits of eEF-1 phosphorylated in vitro by the insulin-stimulated multipotential protein kinase, the maps of the beta and delta subunits were identical. Five phosphopeptides obtained with the alpha subunit in vivo were identical to those obtained with S6 kinase in vitro; the remainder were unique. To examine whether protein kinase C had a role in phosphorylation of eEF-1 in response to insulin, protein kinase C was down-regulated by prolonged exposure of 3T3-L1 cells to 4beta-phorbol 12-myristate 13-acetate (PMA). Phosphorylation of the alpha, beta and delta subunits was stimulated 2.5-fold in response to insulin, with elongation activity stimulated to a similar extent, suggesting that protein kinase C had no effect on stimulation of elongation in response to insulin. Thus, stimulation of eEF-1 activity in response to insulin appears to be mediated primarily by multipotential S6 kinase. This data is consistent with previous studies on stimulation of initiation via phosphorylation of initiation factors by multipotential S6 kinase [Morley, S. J. & Traugh, J. A. (1993) Biochemie (Paris) 95, 985-989].  相似文献   

18.
The predicted major intracellular domains of the chick and rat neuronal nicotinic acetylcholine receptor alpha 7 subunits were expressed in E. coli as glutathione-S-transferase fusion proteins. These proteins were then purified to near homogeneity by chromatography on immobilized glutathione. The intracellular domains of the alpha 7 subunit from both species were phosphorylated to high stoichiometry by cAMP-dependent protein kinase, but not by protein kinase C, cGMP-dependent protein kinase, or calcium/calmodulin-dependent protein kinase. Phosphorylation occurred on serine residues only within an identical single tryptic peptide for both proteins. This conserved phosphorylation site was identified as Ser 342 utilizing site-directed mutagenesis. These results demonstrate that the intracellular domain of the alpha 7 subunit is a substrate of PKA, and suggest a role for protein phosphorylation in mediating cellular regulation upon neuronal AChRs containing this subunit.  相似文献   

19.
The interaction of the alpha subunit with the beta2 subunit of tryptophan synthase is known to be necessary for the activation of each subunit and for the catalytic efficiency of the alpha2beta2 complex. To elucidate the roles of hydrogen bonds in the interaction site between the alpha and beta subunits for subunit association, eight mutant alpha subunits at five hydrogen bonding residues (N104D, N104A, N108D, N108A, E134A, E135A, N157D, and N157A) were constructed, and the thermodynamic parameters of association with the beta subunit were obtained using a titration calorimeter. The N104D and N104A mutations remarkably decreased the stimulation activities, the association constants, and the association enthalpies. Although the association constant and the stimulation activities of E134A were reduced in the absence of salt, the change in the association enthalpy was relatively small, and the addition of salt could repair its defects. The substitutions at positions 135 and 157 did not affect the stimulation activity and decreased the Gibbs energy of association corresponding to the defect in 1 mol of hydrogen bond. The present results suggest that the alpha subunit which has a mutation at position 104 cannot fold into an intact conformation upon complex formation, resulting in reduced stimulation activities. The hydrogen bond with Asn-104, which is a conserved residue among 16 microorganisms, was especially important for alpha/beta interaction and mutual activation.  相似文献   

20.
The Na-K-ATPase beta 1 subunit acts as the beta subunit for the HK alpha 2 protein in the rat kidney. The colonic H(+)-K(+)-ATPase is a member of the P-type ATPases, and has been shown to contribute to potassium transport by the mammalian kidney and colon. The P-type ATPases often consist of an alpha subunit that contains the catalytic site and a beta subunit that participates in regulation of enzyme activity and targeting of the enzyme to the plasma membrane. The cDNA of the alpha subunit (HK alpha 2) has been cloned and the HK alpha 2 protein has been isolated from the rat kidney and colon. However, a unique beta subunit for the colonic H(+)-K(+)-ATPase has not been described. To determine if one of the known beta subunits present in the kidney might act as the beta subunit for the colonic H(+)-K(+)-ATPase, microsomes enriched in the colonic H(+)-K(+)-ATPase were isolated using an HK alpha 2-specific antibody (AS 31.7) and the Minimac magnetic separation system. Immunoblots of rat kidney microsomal protein isolated with antibody AS 31.7 were probed with antibodies directed against the gastric HK beta subunit, Na(+)-K(+)-ATPase alpha 1, and Na(+)-K(+)-ATPase beta 1 subunits. A band of the appropriate size was detected with Na(+)-K(+)-ATPase beta 1-specific antibodies, but not those directed against HK beta 1. These data suggest that Na(+)-K(+)-ATPase beta 1 could be the beta subunit for the colonic H(+)-K(+)-ATPase in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号