共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了基于H桥换流单元与集中式斩波电阻的多电平集中式卸荷电路(dynamic braking resistor,DBR),介绍了其结构拓扑、参数设计与控制方法,并对比模块化多电平卸荷电路,验证其故障穿越(fault ridethrough,FRT)性能。针对海上风电场并网柔性直流输电系统,结合双馈与永磁直驱风场侧换流站的交流电压降压法,利用风电机组(wind turbine generator,WTG)自身功率调节能力,设计FRT协调控制策略,在保证系统故障穿越性能的前提下,缩减卸荷电路所需容量,适用于高压大容量场合。依据德国已投运Borwin1工程的参数,在PSCAD/EMTDC电磁暂态仿真软件中搭建三端柔性直流输电系统模型,验证了所提协调控制策略具有良好的FRT控制效果。 相似文献
2.
《高电压技术》2021,47(8):2688-2697
为应对送端交流电网故障时的过电压问题,分析了风场-柔性直流输电系统送端交流电网故障过电压产生机理,并提出了过电压抑制策略。首先,建立了不同电网故障下换流变压器网侧及阀侧电压的数学模型,研究了模块化多电平换流器(modular multilevel converter,MMC)控制策略对于电网电压的影响机理,及电网过电压导致MMC出现的过调制问题对于系统控制性能的影响;在此基础上,提出了一种过电压抑制策略,能够在不引入负序电流的条件下有效抑制系统的过电压水平,且能够在故障线路切除后加快电网电压的恢复速度;最后,基于PSCAD/EMTDC仿真平台构建了风场-柔性直流输电系统模型并进行了仿真研究。研究结果表明:所提出的送端交流电网电压数学模型能够准确反映系统的故障特性,所提出的过电压抑制策略能够实现预期控制效果,有利于系统在故障发生及恢复过程中的稳定运行。 相似文献
3.
4.
为降低风电场-柔性直流并网系统在交流主网发生低电压故障时的穿越成本,提出一种直流耗能装置与风电机组卸荷电路协同作用的电网故障穿越策略,在电网故障时送端换流器配合风电场快速降低直流功率输出.由于直流耗能装置仅在故障发生的前期、风电场输出功率下降前起到限制直流电压升高的作用,该策略能够显著降低直流耗能装置的体积.在此基础上,该策略将直流耗能装置中的耗能电阻分散置入到受端模块化多电平换流器中,进一步降低了卸荷成本.最后,在PSCAD/EMTDC仿真软件中,构建了风电场-柔性直流并网系统的仿真算例,对所提出的故障穿越方法的正确性和有效性进行了验证. 相似文献
5.
《高电压技术》2021,47(8):2760-2768
海上风电柔直系统发生故障等暂态过程时,系统频率波动会影响健全风电场的正常运行,严重时将引起大规模风机脱网。为此,分析了海上风电系统交流电压频率动态与电压d轴、q轴分量的关系,进而提出一种频率波动抑制方案,在换流站控制器中引入频率环对系统母线电压的频率波动进行控制。考虑到风电系统不同位置频率动态的差异性,提出一种海上风电系统频率协同优化控制方案,利用风电机组的无功输出能力对风机汇集点处的频率波动问题进行进一步优化控制。最后,在MATLAB/Simulink中搭建基于模块化多电平换流器高压直流输电(modular multilevel converter based high voltage direct current transmission, MMC-HVDC)送出的海上风力发电系统仿真模型。研究结果表明:在系统故障与运行工况突变的情况下,频率协同优化控制方案可将风电系统母线电压与风机汇集点处电压的频率波动抑制到无控制时的30%以下。所提方案有效地实现了对风电柔直系统暂态情况下的频率波动抑制。 相似文献
6.
赵勃扬王锡凡宁联辉王秀丽孟永庆 《中国电机工程学报》2023,(12):4589-4599
该文提出分频海上风电系统的不对称故障穿越控制策略。首先,介绍分频海上风电系统的基本结构与运行方式。其次,根据关键变频设备模块化多电平矩阵式换流器(modular multi-level matrix converter,M^(3)C)的数学模型,揭示电网电压不对称时M3C的运行特性,并提出分频海上风电系统的故障穿越控制策略。该策略在M3C双αβ0坐标变换控制的基础上,改进桥臂间均压控制策略,并引入M^(3)C-风电场联合电压–频率–功率下垂控制实现风电场减出力。最后,在MATLAB/Simulink中搭建分频海上风电系统电磁暂态仿真模型,对所提出的控制策略进行验证。仿真结果表明:提出的故障穿越控制策略能够在保证M3C运行安全的同时,满足风电场功率外送需求,实现风电场对工频系统的无功支撑目标。 相似文献
7.
海上风电柔直送出系统在交流电网发生故障时应该具备故障穿越能力.然而,风电场和柔直系统中的多类型换流设备在没有高速通信的情况下,很难协同控制实现系统低电压穿越过程中的直流电压稳定.因此,提出基于谐波注入信息传递的海上风电柔直送出系统故障穿越协调控制方法.在故障期间,风电场侧换流器检测到直流电压超过阈值后降低风电场交流电压幅值,并向系统注入谐波,使得风电机组换流器根据不同谐波阈值协同限制注入电网的功率,实现无通信条件下系统多换流设备协同的故障穿越.通过与常规的只由风电场侧换流器单独降功率的方法进行比较,在电网的各种故障类型下,所提方法可以更快速地将柔直直流电压限定在允许范围之内,系统可实现安全、可靠的故障穿越. 相似文献
8.
采用具有明显技术和经济优势的架空线柔性直流输电是大规模可再生能源并网的理想方案。然而,架空线故障率较高且直流系统故障发展迅速,仅靠直流断路器隔离故障线路并不能完善地解决系统的故障穿越问题。为解决该问题,针对大规模风电场经柔性直流输电并网系统的直流线路故障工况,充分利用风电场中广泛配置的储能系统,提出从故障定位隔离到故障类别判断,再到储能系统与换流站、风电场之间协调控制的一套完整直流故障穿越策略,并从能量角度展开故障特性分析。与现有工程中采用的耗能电阻方式相比,所提策略调节系统不平衡功率的灵活性更高,控制效果更优,且对所储存能量可以再利用,避免能量浪费。此外,为降低对储能系统的功率及容量需求,提出风电机组转子加速控制以减少风电场出力的方案。最后,在PSCAD/EMTDC仿真平台验证了所提方法的有效性。 相似文献
10.
11.
12.
海上风电工程逐渐向深远海和多端柔性直流输电技术推进。当岸上交流电网发生故障时,海上风电经多端柔直并网系统应该具有故障穿越的能力。然而现有方法主要研究电网侧换流站的系统级控制策略,未尽限利用风场侧换流站及场站内变流器的协同配合,严重故障时易导致换流站过载。此外,传统两端柔直故障穿越方法未针对多端场景改进,可能会出现风场脱网事故。针对上述问题,首先将故障划分为自消纳和非自消纳场景。自消纳场景下不平衡功率较小,结合风机自身安全减载能力和从站剩余容量,分别提出了基于降压法的超速减载和考虑功率裕度的从站电压偏差下垂控制策略。非自消纳场景下不平衡功率较大,分别提出了调度中心通信正常和异常情况下的故障穿越控制策略。最后在PSCAD/EMTDC仿真平台建模验证了所提控制方法的有效性。 相似文献
13.
风电经柔性直流输电(简称“柔直”)系统接入交流电网已经成为陆上/海上风电并网的主要方式之一,但风电与柔直系统之间存在控制相互作用引发次同步振荡的风险。为抑制此类振荡,提出一种独立于柔直系统和风电机组变流器的并联电压源变流器(VSC)型次同步阻尼控制器。该控制器使用集电线电压作为输入信号,提取信号中的振荡模态后调制其幅值、相位,然后利用并联VSC向系统注入次同步频率的电流来抑制振荡。基于复阻抗法对控制器参数进行了优化设计。仿真结果表明,所提出的控制器能在不同工况下有效抑制振荡。 相似文献
14.
针对大型风电场并网难题,分析了适合大型海上风电场送电并网方式。针对应用柔性直流方式送电并网方式,研究了柔性直流输电系统的数学模型和控制策略。应用变速恒频风机的海上风电场随风速变化而功率输出变化,海上换流站的控制需要保持电压频率稳定,根据其暂态方程提出了改进的直接电压控制来控制风电场母线电压频率。对电网侧换流站采用双闭环直接电流控制,控制直流电压和无功。基于PSCAD/EMTDC仿真平台搭建了海上风电场等效模型以及通过柔性直流送电系统仿真模型,对风电场风速变化、当地负荷切入以及无功指令变化进行了仿真,验证了控制策略的正确有效。 相似文献
15.
柔性直流输电技术凭借其为无源电网提供同步交流电源支撑的能力,正逐渐成为远距离海上风电并网的首选方案。主要针对柔性直流系统用于海上风电并网时的接地方式进行了深入的研究。首先对比分析了目前已有工程中的几种换流站接地方式,描述了几种接地方式的优缺点。然后介绍了柔性直流系统用于海上风电并网的拓扑结构和控制策略,选出了三种适用于该场景的换流站接地方式。最后针对国内某规划海上风电场,在电磁仿真软件PSCAD/EMTDC中搭建了±320 kV/1 100 MW柔性直流系统仿真模型。并基于该模型对柔性直流系统进行了故障扫描,研究对比了三种接地方式下系统的过电压特性,得出三种接地方式下的柔性直流系统均具有相似的过电压特性。该研究成果填补了相关研究领域的空白,可以为国内的海上风电并网工程提供参考依据。 相似文献
16.
大型海上风电场经柔性直流输电系统(offshorewind farms+voltagesourceconverterbasedHVDC,OWF+VSCHVDC)接入陆上电网,在传统控制模式下无法直接向陆上电网提供惯量响应。因此,提出了一种面向OWF+VSCHVDC系统的海上风电机组基于超级电容的协调惯量支撑(supercapacitor-based coordinated inertia support,SCIS)策略。在SCIS策略下,风电机组直流侧附加超级电容,通过改变超级电容电压进行充放电以模拟同步机惯量;VSC-HVDC的陆上电网侧换流站采用直流电压/频率(udc/f)下垂控制,将陆上电网频率通过直流电压变化传达给风场侧换流站,再通过风场侧换流站调节海上电网频率,使其与陆上电网频率耦合。此外,通过小信号稳定性分析对该策略的关键参数进行了优化。最后,在MATLAB/Simulink环境中搭建了OWF+VSC-HVDC系统的仿真模型,分别在负荷变化、风速变化、陆上电网故障3种工况下对SCIS策略进行了验证和评估。结果表明,SCIS可利用风电机组的超级电容进行惯量模拟,并通过VSC-... 相似文献
17.
提升直流并网风电故障穿越能力的新方法 总被引:1,自引:0,他引:1
提出提升柔性直流并网的风电场系统故障穿越能力的新方法.分析了柔性直流输电的传统电流限幅器的不足,设计了动态改变限值的电流限幅器,该限幅器在电流扰动期间,能限制过电流,并能最大限度地提升输出功率.提出了新的转速储能方法,即利用风电机组自身的转子来实现提速储能,用以短时储存故障期间的过剩能量,以提高并网系统的故障穿越能力.仿真分析验证了所提方法的有效性. 相似文献
18.
随着远海大容量海上风电的发展,基于模块化多电平变换器(modular multilevel converter,MMC)的高压柔性直流输电技术成为实现远海风电输送的重要方案。然而,由于高压直流外送电缆距离长,敷设环境恶劣,外送电缆易遭受各类意外事件。该文针对海底电缆最为常见的单极永久性接地故障,结合海上半桥型MMC—岸上混合型MMC的输电拓扑,分别提出利用海上换流站一主一备变压器和接入低电压等级变压器2种组网方案,进而提出实现容错运行的换流站、风电场容错控制策略。最后仿真验证了在所提组网方案下,该文所提控制策略可实现海底电缆单极接地故障下海上风电经柔直并网系统容错运行,并分析对比了所提方案的技术难度、作用效果、经济性及适用场景。 相似文献
19.
考虑大规模海上风电接入的多电压等级直流电网运行控制策略研究 总被引:2,自引:0,他引:2
海上风电场功率送出需求使得新型直流输电技术成为研究热点之一。我国海上风电多分布在风电资源较为丰富的深海区域,海上风电场和陆上受端站分布较为分散,为实现大规模远距离多区域海上风电功率的有效传输,提出多电压等级直流电网传输方法。文中设计并重点研究一个三电压等级五端直流电网的拓扑结构,并对所研究的3种运行工况,即海上风电功率波动,陆上电网功率需求波动及陆上换流站退出运行,提出相应的直流电网运行控制策略。通过PSCAD/EMTDC仿真软件建立该直流电网的仿真模型,并对所研究的运行工况进行仿真分析。仿真结果证明所提出的控制策略是有效的,该直流电网电压及功率可灵活控制,直流电网运行稳定可靠。该研究也为未来直流电网的互联提出了一种可行的解决方案。 相似文献
20.
电网故障时模块化多电平换流器型高压直流输电系统的分析与控制 总被引:4,自引:0,他引:4
电网故障条件下模块化多电平换流器型高压直流输电系统的控制策略是目前亟需进行的一个研究课题。为此,基于Kirchhoff定律,给出了描述模块化多电平换流器(MMC)交流侧和直流侧动态特性的通用动态数学模型。该模型不仅适用于交流电网对称状态,而且适用于交流电网不对称故障状态,并考虑了换流变压器漏感的影响。根据对称分量法将换流器的通用动态数学模型分解为包含正序和负序分量的2个子系统,引入了换流器的正序和负序电流矢量解耦控制器以及外环功率控制器,可以实现在交流电网正常以及故障状态下对模块化多电平换流器型高压直流(MMC-HVDC)输电系统的有效控制。设计了电网故障期间MMC输送功率的动态限幅控制,可以根据故障的种类和程度调节输送功率的限幅值,防止开关器件过载。指出了总直流电流在3个相单元之间的分配在交流系统对称状态下是基本均匀的,而在交流系统不对称故障状态下是不均匀的。仿真结果验证了所设计的电网故障时MMC-HVDC控制器的有效性和正确性。 相似文献