首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
随着移动边缘计算的兴起,如何处理边缘计算任务卸载成为研究热点问题之一。针对多任务-多边缘服务器的场景,本文首先提出一种基于能量延迟优化的移动边缘计算任务卸载模型,该模型考虑边缘设备的剩余电量,使用时延、能耗加权因子计算边缘设备的总开销,具有延长设备使用时间、减少任务卸载时延和能耗的优点。进一步提出一种基于改进遗传算法的移动边缘计算任务卸载算法,将求解最优卸载决策的问题转化为求解种群最优解的问题。对比仿真实验结果表明,本文提出的任务卸载模型和算法能够有效求解任务卸载问题,改进后的任务卸载算法求解更精确,能够避免局部最优解,利于寻找最优任务卸载决策。  相似文献   

2.
目前边缘计算卸载的主流方案是将其建模为一个多目标优化问题,即最小化能耗和延时。不同于已有研究,主要考虑边缘计算中,不同卸载区域的任务具有一定的相似性,可以利用任务的相似性加快算法的收敛速度和求解效果。以此基于进化多任务优化,提出一种进化多任务多目标优化算法求解不同区域的任务卸载问题。该算法考虑了多个独立的待优化区域,将每个区域的任务卸载系统模型建模为一个多目标优化问题。通过学习不同区域的用户分布和待处理任务的相似性来动态调节种群的交流程度,加快了收敛速度,通过一次进化,实现对两个不同区域的优化。实验结果表明,算法在收敛速度及最优解分布的均匀性上均取得较好效果,可以获得边缘计算下的卸载部署优化方案。  相似文献   

3.
随着物联网(Internet of Things,IoT)技术的快速发展,出现了大量具有不同功能的设备(如多种带不同传感器的智能家居设备、移动智能交通设备、智能物流或仓储管理设备等),它们相互连接,被广泛应用于智能城市、智慧工厂等领域.然而,这些物联网设备的处理能力有限,很难满足延迟敏感、计算密集型应用的需求.移动边缘...  相似文献   

4.
为了研究移动设备在多资源复杂环境下的能量消耗问题,提出一种针对移动边缘设备计算卸载的改进粒子群算法。首先基于多环境的移动设备能耗提出一种移动设备能量消耗的计算模型;其次针对计算资源分配问题设计一种可以用于衡量分配方案优劣的适应度算法;最后提出一种改进的粒子群算法,用于求解进一步降低移动边缘设备能耗分配方案的最优解。通过使用模拟仿真软件对多种卸载策略下移动设备能耗、系统响应时间等关键指标对比表明,本文算法在满足用户响应时间的前提下,在求解降低移动设备能耗调度分配方案最优解的过程中具有更优的表现。  相似文献   

5.
多服务移动边缘计算网络环境中的不同服务的缓存要求、受欢迎程度、计算要求以及从用户传输到边缘服务器的数据量是随时间变化的。如何在资源有限的边缘服务器中调整总服务类型的缓存子集,并确定任务卸载目的地和资源分配决策,以获得最佳的系统整体性能是一个具有挑战性的问题。为了解决这一难题,首先将优化问题转换为马尔可夫决策过程,然后提出了一种基于软演员—评论家(soft actor-critic,SAC)的深度强化学习算法来同时确定服务缓存和任务卸载的离散决策以及上下带宽和计算资源的连续分配决策。算法采用了将多个连续动作输出转换为离散的动作选择的有效技巧,以应对连续—离散混合行动空间所带来的关键设计挑战,提高算法决策的准确性。此外,算法集成了一个高效的奖励函数,增加辅助奖励项来提高资源利用率。广泛的数值结果表明,与其他基线算法相比,提出的算法在有地减少任务的长期平均完成延迟的同时也具有良好的稳定性。  相似文献   

6.
为了满足延时敏感型应用执行的需求,实现移动设备的能耗优化,基于移动边缘计算环境提出一种融入缓存机制的任务卸载策略。与仅关注计算卸载决策不同,该策略可将已完成的重复请求任务及相关数据在边缘云上进行缓存,这样可以降低任务的卸载延时。将计算与存储能力受限的边缘云中的任务缓存与卸载优化决策问题分解为两个子优化问题进行求解。证明任务卸载子问题可转换为决策变量的凸最优化问题,而任务缓存子问题可转换为0-1整数规划问题。分别设计内点法和分支限界法对两个子问题进行求解,进而得到满足截止时间约束时能耗最优的卸载决策解。仿真算例证明了该策略在动态异构的任务执行环境下可以实现更好的能效优化。  相似文献   

7.
为了在移动边缘计算(MEC)中最大限度地减少处理用户任务的时延和能耗,改善用户体验,以最小化用户的完成时间和能耗的加权和为目标,在计算资源的约束下研究了多用户、多MEC服务器中的计算卸载问题。针对此问题,考虑卸载决策和资源分配之间存在的依赖关系,首先将原问题解耦为卸载决策和计算资源分配2个子问题。然后,使用鲸鱼优化算法求解卸载决策问题,通过添加非线性收敛因子和惯性权重加快收敛速度;引入反馈机制,防止陷入局部最优,得到更高概率可行的卸载决策;对于资源分配问题使用拉格朗日乘子法得到每个卸载决策下的最佳计算资源分配解。最后,通过多次迭代得到稳定的收敛解。仿真实验结果表明,与其他基准方案相比,最多减少了44.6%的系统开销。  相似文献   

8.
9.
袁培燕  蔡云云 《计算机应用》2019,39(9):2664-2668
基于移动边缘计算的内容卸载技术可以有效降低骨干网络的流量压力,提升终端用户体验。针对终端用户与小基站之间的异质接触率,设计了一种贪心策略的内容卸载方案。首先,将内容最优卸载问题转化为内容最大投递率问题;其次,证明最大投递率问题满足子模性,在此基础上,采用贪心算法部署内容,该算法可以以概率(1-1/e)保证其最优性;最后,详细分析了内容流行度指数以及缓存大小对不同卸载方案的影响。实验结果表明,所提方案提高了内容投递率同时降低了内容传输时延。  相似文献   

10.
基于边缘云和移动辅助设备的计算卸载优化方案   总被引:1,自引:0,他引:1  
  相似文献   

11.
移动边缘计算场景中任务的不确定性增加了任务卸载及资源分配的复杂性和难度.鉴于此,提出一种移动边缘计算不确定性任务持续卸载及资源分配方法.首先,构建一种移动边缘计算不确定性任务持续卸载模型,通过基于持续时间片划分的任务多批次处理技术应对任务的不确定性,并设计多设备计算资源协同机制提升对计算密集型任务的承载能力.其次,提出一种基于负载均衡的自适应策略选择算法,避免计算资源过度分配导致信道拥堵进而产生额外能耗.最后,基于泊松分布实现了对不确定任务场景模型的仿真,大量实验结果表明时间片长度减小能够降低系统总能耗.此外,所提算法能够更有效地实现任务卸载及资源分配,相较于对比算法,最大可降低能耗11.8%.  相似文献   

12.
移动边缘计算(mobile edge computing, MEC)是近年来出现的一种崭新技术,它能满足更多应用程序所需的计算资源,能使移动网络边缘资源受限的物联网(IoT)设备获得更好的性能.然而,众所周知,边缘基础设施在提高电力使用效率和整合可再生能源方面的能力较差.此外,由于物联网设备的电池容量是有限的,当电池电量耗尽时,所执行任务会被中断.因此,利用绿色能源来延长电池的使用寿命是至关重要的.此外,物联网设备间可以动态、有益地共享计算资源和通信资源.因此,为了提高边缘服务器的能效(power usage efficiency, PUE),实现绿色计算,设计了一种高效的任务卸载策略,提出了一种利用能量收集(energy harvesting, EH)技术和设备间通信(device-to-device communication, D2D)技术的绿色任务卸载框架.该框架旨在最小化任务执行所造成的边缘服务器端电网电力能源成本及云服务器端云资源租用成本.与此同时,引入激励约束,能够有效促进IoT设备间的协作,并防止IoT设备资源被其他设备过度使用.考虑到系统未来信息的不确定性,例如绿色能源的可获得性,提出了一种基于李雅普诺夫优化技术的在线任务卸载算法,该算法仅依赖于系统的当前状态信息.该算法的实现只需要在每个时间片内求解一个确定性问题,其核心思想是将每个时间片的任务卸载问题转化为图匹配问题,并通过调用爱德蒙带花树算法求得近似最优解.对所提出算法的性能进行了严格的理论分析,并通过实验验证了所提出框架的优越性能.  相似文献   

13.
刘伟  黄宇成  杜薇  王伟 《软件学报》2020,31(6):1889-1908
云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单个移动终端和边缘服务器资源无限的场景,这在实际应用中存在一定的局限性.因此,针对边缘服务器资源受限下的任务卸载问题,提出了一种面向多用户的串行任务动态卸载策略(multi-user serial task dynamic offloading strategy,简称MSTDOS).该策略以应用的完成时间和移动终端的能量消耗作为评价指标,遵循先来先服务的原则,采用化学反应优化算法求解,充分考虑多用户请求对服务器资源的竞争关系,动态调整选择策略,为应用做出近似最优的卸载决策.仿真结果表明,MSTDOS策略比已有算法能够取得更好的应用性能.  相似文献   

14.
随着智慧物联体系的发展,物联网中应用程序的种类与数量不断增加.在移动边缘计算(mobile edge computing, MEC)中,通过允许移动用户将任务卸载至附近MEC服务器以加快移动应用程序的速度.本文通过考虑不同任务属性、用户的移动性和时间延迟约束模拟移动边缘场景.根据用户移动轨迹,将目标建模为寻找满足时延约束条件且在卸载过程中产生最小能耗MEC服务器优化模型,并提出一种最小能耗卸载算法求解该问题的最优解.仿真结果表明,在约束条件下,提出的算法可以找到在用户移动轨迹中产生最小能耗的MEC服务器,并显著降低任务卸载过程的能耗与时延,提高应用程序服务质量.  相似文献   

15.
在万物互联的物联网时代,云计算凭借超强的计算能力和存储能力提供了主流的大数据处理方案。随着5G的正式商用,面对5G+物联网呈爆炸式增长的终端设备以及低时延、低功耗的用户需求,基于云计算的大数据处理方案逐渐显露弊端。分布式的面向移动终端的大数据处理方案——移动边缘计算呼之欲出。本文通过对比云计算、边缘计算和移动边缘计算的概念和相关特征,引入移动边缘计算的定义及八大典型应用场景,进一步列举出移动边缘计算的发展历程。随后,归纳出移动边缘计算的几种国际标准模型以及框架设计的相关研究,结合移动边缘计算资源分配的关键问题进行梳理。最后,提出移动边缘计算的未来的研究方向和挑战。  相似文献   

16.
为适应摄像头在智慧城市、智能交通、自动驾驶等新兴领域应用部署愈加广泛的需求,视频分析需更高精度、更低延时地响应分析结果。然而,这种高精度的分析同时也带来了巨大的计算资源需求,计算资源受限的摄像头无法胜任分析任务。边缘计算不仅可以解决本地摄像头计算资源问题,还可以显著降低向云端传输视频流数据的时间。本文探讨了利用深度强化学习方法,在边缘节点辅助摄像头集群视频分析任务场景下,根据当前网络系统条件动态决策,卸载部分指定摄像头上的分析任务,以在满足任务响应延时的约束前提下,最大化一段时间内任务分析的精度。仿真结果表明,本文提出的方法在任务的响应延时和准确度方面获得了良好效果。  相似文献   

17.
边缘计算可以有效解决传统云计算中传输时延大、用户数据安全性不够高、传输带宽压力大以及终端移动设备计算能力受限、能耗大等问题.计算卸载是边缘计算中的关键技术,针对当前计算卸载技术的研究现状和存在的不足,本文围绕计算卸载,首先介绍边缘计算的体系架构以及部分应用和分析4种主要的影响因素以及相应具体的条件;其次针对3种决策目标分析了算法策略及对应变量在算法中的作用;最后总结目前在计算卸载中存在的不足.  相似文献   

18.
计算卸载技术作为移动边缘计算(Mobile Edge Computing,MEC)的关键技术,通过合理的卸载决策能有效解决终端设备计算能力弱、时延长和能耗高等问题.介绍了MEC的概念、参考架构、部署方案和典型应用场景;分别从卸载决策的目标、粗粒度、细粒度的卸载方式及MEC与端对端(Device-to-Device,D2...  相似文献   

19.
车辆边缘计算环境下任务卸载研究综述   总被引:3,自引:0,他引:3  
计算密集和延迟敏感型车辆应用的出现对车辆设备有限的计算能力提出了严峻的挑战,将任务卸载到传统的云平台会有较大的传输延迟,而移动边缘计算专注于将计算资源转移到网络的边缘,为移动设备提供高性能、低延迟的服务,因此可作为处理计算密集和延迟敏感的任务的一种有效方法.同时,鉴于城市地区拥有大量智能网联车辆,将闲置的车辆计算资源充分利用起来可以提供巨大的资源和价值,因此在车联网场景下,结合移动边缘计算产生了新的计算模式——车辆边缘计算.近年来,智能网联车辆数量的增长和新兴车辆应用的出现促进了对车辆边缘计算环境下任务卸载的研究,本文对现有车辆边缘计算环境下任务卸载研究进展进行综述,首先,从计算模型、任务模型和通信模型三个方面对系统模型进行梳理、比较和分析.然后介绍了最小化卸载延迟、最小化能量消耗和应用结果质量三种常见的优化目标,并按照集中式和分布式两种不同的决策方式对现有的研究进行了详细的归类和比较.此外,本文还介绍了几种常用的实验工具,包括SUMO、Veins和VeinsLTE.最后,本文围绕卸载决策算法复杂度、安全与隐私保护和车辆移动性等方面对车辆边缘计算任务卸载目前面临的挑战进行了总结,并展望了车辆边缘计算环境下任务卸载未来的发展方向与前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号