首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
钙基吸附剂热解/碳酸化循环分离CO2过程的研究   总被引:2,自引:0,他引:2  
钙基吸附剂热解/碳酸化循环再生CaO吸附CO2是燃煤电站控制CO2排放的有效方法之一。随着热解/碳酸化循环反应次数的增加,烧结使再生的CaO的碳酸化转化率迅速降低。为了使CaO在长期循环热解/碳酸化再生过程中保持较高的CO2吸附能力,分别采用3种溶液改性钙基吸附剂,包括乙醇水溶液、醋酸溶液和KMnO4溶液。同时对贝壳循环吸附CO2的特性进行了研究。研究表明,经乙醇和醋酸溶液改性后,热解产生的CaO的循环碳酸化转化率得到明显提高,抗烧结性能得到增强,并且比表面积和比孔容显著增大。经KMnO4溶液改性后的钙基吸附剂的循环转化率也得到了提高,这是由于KMnO4分解的活性物质催化了CaO的碳酸化反应。数据表明贝壳作为钙基CO2吸附剂是可行的。改性的钙基吸附剂和贝壳作为CO2吸附剂具有良好的应用前景。  相似文献   

2.
张学镭  崔巍 《电力建设》2015,36(5):119-124
针对某1 000 MW超临界机组,建立了基于钙基吸收剂循环煅烧/碳酸化法捕集CO2的系统流程,研究了弛放率、气固分离效率、钙碳摩尔比对煅烧能耗、发电热效率及循环固体质量流量的影响。结果表明:引入碳捕集系统后,机组发电热效率为34.6%,较设计值降低了9.6%;将碳捕集系统回收热量用于发电,电厂净输出功率增加了113.4 MW;随着弛放率的提高,发电热效率、循环固体物料质量流量均下降,煅烧能耗先下降后升高;随着气固分离效率的提高,发电热效率、循环固体物料质量流量均升高,煅烧能耗先下降后升高;随着钙碳摩尔比的提高,煅烧能耗、发电热效率和循环固体物料质量流量均升高。  相似文献   

3.
CO2捕集是实现碳中和的重要技术路径。该文实验研究了298、348K的单组分CO2和298、313K的CO2/H2O双组分气体,在活性炭、活性氧化铝、3A、13X中的等温吸附和动态吸附特性。基于Langmuir、LRC、Toth、DA、Freundlich吸附模型,对单组分CO2吸附预测与实验结果进行了对比分析。研究了CO2/H2O吸附过程进气水蒸气含量、流量、温度对4种吸附剂的穿透曲线和吸附量的影响规律。结果表明,单组分CO2吸附量:13X>活性炭>活性氧化铝>3A,CO2/H2O穿透时间随流量增大和温度升高而缩短;沸石类穿透时间随水蒸气含量增多而缩短,其他吸附剂表现相反;水蒸气含量增加会抑制CO2吸附;3A具有较好的CO2/H2O吸附选择性。  相似文献   

4.
浸渍法制备的固态胺CO2吸附剂吸附性能   总被引:1,自引:0,他引:1  
赵毅  李旭 《中国电力》2014,47(1):146-150
控制和减缓化石燃料电厂的CO2排放对于缓解大气中CO2浓度的持续上升具有重要意义。作为一种燃烧后CO2 捕集技术,固体CO2吸附剂具有低能耗、弱腐蚀性、易再生等优点,在CO2减排领域有着广泛的应用前景。介绍浸渍法制备的固态有机胺吸附剂对CO2的吸附性能,着重介绍载体性质、有机胺负载量、温度和烟气含水量等因素对固态胺吸附剂吸附性能的影响,并对其机理进行了分析。此外,对比了不同固态胺吸附剂在75 ℃下对CO2的吸附能力。分析认为,相对于其他类型的CO2固体吸附剂,固态胺吸附剂较适用于从高温湿烟气中捕集CO2。  相似文献   

5.
利用藻类生物捕集CO2是一种很有前景的减排烟气CO2的方法,但是烟气CO2在藻液中停留时间短,向溶解无机碳的转化困难,限制了藻细胞的生长固碳。通过煅烧不同时间的锌沸石咪唑骨架来制备CO2吸附剂,利用不饱和金属活性位点吸附CO2并促进CO2向HCOO3-的转化,为藻细胞的生长固碳提供充足的溶解无机碳。结果表明:煅烧6h得到的吸附剂拥有最大的比表面积和孔容积有利于CO2吸附和转化,可提高藻液中HCOO3-浓度55.7%,使得钝顶节旋藻的光能利用效率在99.99%煤化工烟气CO2条件下增加了2.43倍,培养时间从7天缩短至5天,生物质产量提高了74.7%,CO2固定速率提高了93.7%,为微藻减排烟气CO2提供了新思路。  相似文献   

6.
作为新型CO2吸收剂的乙酸钙循环碳酸化特性   总被引:8,自引:3,他引:5  
钙基吸收剂的循环煅烧/碳酸化反应是煤燃烧或气化过程中捕获CO2的有效途径。该文采用乙酸溶液调质石灰石的产物乙酸钙作为CO2的新型吸收剂,以解决石灰石经过多次循环煅烧/碳酸化反应后吸收CO2能力急剧衰减的问题。在煅烧/碳酸化反应器上,研究碳酸化温度和煅烧温度对乙酸钙循环碳酸化转化率的影响。结果表明:碳酸化温度在650~700 ℃时乙酸钙能获得很高的碳酸化转化率,经20次循环后转化率仍高达0.5,明显高于石灰石。在高浓度CO2气氛下,在较高的煅烧温度(920~1 050 ℃)时,乙酸钙仍能获得较高的碳酸化转化率。乙酸钙的抗烧结能力较石灰石更强。多次循环后乙酸钙煅烧后的比表面积和孔容均大于煅烧后的石灰石,且孔容分布和孔比表面积分布均优于煅烧后的石灰石。  相似文献   

7.
作为新型C02吸收剂的乙酸钙循环碳酸化特性   总被引:1,自引:0,他引:1  
钙基吸收剂的循环煅烧/碳酸化反应是煤燃烧或气化过程中捕获CO2的有效途径.该文采用乙酸溶液调质石灰石的产物乙酸钙作为C02的新型吸收剂,以解决石灰石经过多次循环煅烧,碳酸化反应后吸收CO2能力急剧衰减的问题.在煅烧/碳酸化反应器上,研究碳酸化温度和煅烧温度对乙酸钙循环碳酸化转化率的影响.结果表明:碳酸化温度在650~700℃时乙酸钙能获得很高的碳酸化转化率,经20次循环后转化率仍高达0.5,明显高于石灰石.在高浓度CO2气氛下,在较高的煅烧温度(920~1050℃)时,乙酸钙仍能获得较高的碳酸化转化率.乙酸钙的抗烧结能力较石灰石更强.多次循环后乙酸钙煅烧后的比表面积和孔容均大于煅烧后的石灰石,且孔容分布和孔比表面积分布均优于煅烧后的石灰石.  相似文献   

8.
石灰石的循环煅烧/碳酸化反应是燃煤电站分离CO2的有效方法。为解决石灰石在吸收CO2过程中随着循环反应次数增加碳酸化能力迅速衰减的问题,采用提高反应压力的方法提高其CO2捕获效率。研究表明,提高碳酸化反应压力有利于提高钙基吸收剂的碳酸化转化率。碳酸化反应压力一定时,钙基吸收剂在650~850℃下第一次转化率比较接近,随碳酸化温度的增加碳酸化转化率呈先增加后下降的趋势,碳酸化温度较高时碳酸化转化率随循环次数的增加下降较快,但仍比常压的最佳反应条件下的大。在700℃和0.5MPa下钙基吸收剂获得最高的碳酸化转化率。碳酸化反应压力和温度一定时,增加碳酸化气氛中CO2浓度,碳酸化转化率并不一定提高,钙基吸收剂的加压碳酸化循环反应对不同的煅烧气氛具有非常好的适应性。  相似文献   

9.
利用粉煤灰为原料,制备2大类可用于烟气中CO2捕集的吸附剂。一类是沸石分子筛类吸附剂,利用水热合成法得到A型、X型等沸石分子筛吸附剂。一类是利用粉煤灰制备出适合的多孔载体,使用浸渍法得到固态胺类吸附剂。沸石分子筛对于CO2主要是物理吸附,吸附容量169~223 mg/g,固态胺吸附剂是利用胺基与CO2结合介于物理与化学吸附之间,吸附容量108~189 mg/g。实现将粉煤灰以废治废,即可以缓解粉煤灰对环境的影响,也能够实现碳减排,对社会和经济协调发展有利。  相似文献   

10.
硅酸锂吸附CO2的特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
任德刚 《电力建设》2010,31(8):63-66
硅酸锂比锆酸锂吸附容量大、吸附速度快、成本低,是将来高温CO2吸附的首选材料。用双壳机理解释了硅酸锂吸附CO2的过程;分析了合成工艺、合成温度、金属掺杂、粒径等合成条件和吸附温度、脱附温度、CO2浓度、气体流量、再循环等运行条件对硅酸锂吸附CO2性能的影响;指出硅酸锂在甲烷制氢和整体煤气化联合循环工程的CO蒸汽重整工艺分离CO2方面具有良好的应用前景。  相似文献   

11.
利用自制等温测量热重实验台,对钙基吸收剂循环煅烧/碳酸化工艺中水蒸气对吸收剂孔结构影响进行了研究。仅煅烧阶段含有水蒸气时,转化率最低,而仅碳酸化阶段存在水蒸气时,取得最高的碳酸化转化率。煅烧阶段和碳酸化阶段均含有水蒸气与仅碳酸化阶段存在水蒸气转化率类似。采用氮吸附测试了典型工况下的Ca O孔结构。随着循环次数增加,碳酸化转化率降低,比表面积、孔容积逐渐减小。推测煅烧阶段水蒸气通过烧结降低了碳酸化转化率。碳酸化阶段水蒸气通过催化作用提高了转化率,此时孔结构作用并不占主动地位。煅烧和碳酸化均存在水蒸气时,碳酸化阶段水蒸气催化作用更加明显。  相似文献   

12.
钾钠盐类对钙基CO2吸附剂循环碳酸化的影响   总被引:3,自引:1,他引:2  
钙基CO2吸附剂如石灰石在循环煅烧/碳酸化过程中随着循环次数的增加碳酸化转化率迅速衰减,这对CO2的捕捉极为不利。该文在常压煅烧/碳酸化反应器系统上研究KCl、K2CO3、NaCl和Na2CO3作为添加剂对CaCO3循环碳酸化特性的影响。结果表明,在初始循环时,钾钠盐类的添加造成CaCO3碳酸化转化率的明显衰减,但随着循环次数的增加,添加剂使CaCO3转化率下降缓慢,反而高于原CaCO3转化率。钾盐较钠盐对CaCO3循环捕捉CO2能力有更好的促进作用,钾/钠氯化物比钾/钠碳酸盐效果更好。在CaCO3中添加质量比为0.5%~0.6%的KCl,碳酸化温度在680~700℃时,吸附剂能取得最高的循环碳酸化转化率,经20次循环反应后转化率可达0.44,而在相同条件下原CaCO3转化率仅为0.21。KCl对CaCO3碳酸化的影响包括两方面。一方面,KCl虽然在初始循环时使CaCO3煅烧后的比表面积和比孔容减小,但在长期的循环中能够使它们保持稳定;另一方面,KCl能增加反应中碳酸化产物层的缺陷浓度,有可能增大未反应Ca离子通过产物层的扩散率。因此添加了KCl的CaCO3能够在长期煅烧/碳酸化循环中保持良好的碳酸化性能。  相似文献   

13.
随着“双碳”目标的提出,CO2捕集、封存与利用技术发展迅速,但与之相关的能耗理论研究相对匮乏。该文对煤电机组烟气CO2分离的理论能耗进行定量分析,以混合物的一阶截断virial方程为基础,通过分析CO2分离前后混合物系物性的变化,得到CO2捕集理论极限能耗的测算方法,并对碳捕集和节能减排技术进行对比研究,得到单位发电量碳捕集的极限能耗((火用))为151.95kJ/(kW·h)。实现煤电烟气CO2全部分离最少会使得厂用电率增加4.22个百分点。结果可为企业制定减碳技术规划和技术路线遴选提供一定参考。  相似文献   

14.
在鼓泡流化床上研究电石渣在循环煅烧/碳酸化反应中的CO2捕集特性,考察循环次数、反应温度、流化数和颗粒粒径对流态化下电石渣循环碳酸化转化率和速率的影响。结果表明:循环次数增加使电石渣碳酸化转化率衰减,经过50次循环其转化率可达0.2,高于石灰石。反应初期,电石渣碳酸化速率低于石灰石,但经过一段时间后高于石灰石。碳酸化温度为700℃,煅烧温度为850~900℃时可使电石渣保持较高循环捕集CO2性能。增加流化数提高了电石渣化学反应控制阶段的碳酸化速率,对产物层扩散阶段速率影响较小。颗粒粒径增大对化学反应控制阶段速率影响不大,但降低了产物层扩散阶段速率。  相似文献   

15.
镁基吸附剂是适用于IGCC电站与燃烧前CO_2捕集结合、最具发展前景的固体吸附剂之一。纯MgO吸附剂的理论吸附量很高,其实际CO_2吸附效果却并不理想,对其掺杂碱金属盐复合形貌改性是提高其吸附性能的有效手段。该文利用D-葡萄糖酸为碳源,以碳模板法制得了一种NaNO_3改性MgO吸附剂,并提出两段吸附法进行循环实验。结果表明:碳模板法能使吸附剂呈现出高比表面积的纳米级薄片状颗粒,吸附温度提前,在小于300℃时诱导期缩短,吸附速率变快;利用其双峰吸附特性的两段吸附法更是能让其首个循环吸附量达到0.82g/gsorbent,在经历了8个循环时其CO_2吸附量仍能达到0.4g/gsorbent。该文还使用双指数函数对其恒温吸附曲线进行了动力学分析,发现使用碳模板法负载的吸附剂无论是快速反应阶段还是产物层扩散阶段的反应系数都提高了一个数量级以上,两个阶段反应的活化焓均降低。  相似文献   

16.
针对宏观孔隙对无机水合盐水吸附过程中的吸附动力学影响探究较少的问题,以大孔密胺海绵为基底,担载氯化钙形成CaCl2密胺海绵热化学吸附储热复合吸附剂,探究了环境温度、相对湿度、浸渍浓度对复合吸附剂吸附效果的影响,结果表明:在相同吸附湿度、浸渍CaCl2溶液浓度条件下,最佳吸附温度为20℃;在相同吸附温度、浸渍CaCl2溶液浓度条件下,最佳吸附相对湿度为90%;在相同吸附温度、湿度条件下,当浸渍CaCl2溶液质量分数为10%时,复合吸附剂取得最佳吸附效果。  相似文献   

17.
纳米复合钙基高温CO2吸收剂的合成与性能   总被引:1,自引:1,他引:0  
钙基高温碳化/煅烧循环的燃后CO2分离技术已经被证明为燃煤电厂尾气CO2捕捉最有吸引力的方式之一.但是,随着循环反应次数的增加,再生的CaO的捕捉效率迅速降低.为了提高多次循环后CaO的碳化效率.文中采用了溶胶凝胶燃烧合成法制备了纳米复合CaO/MgO吸收剂,其中CaO与MgO的摩尔比为10∶1.研究结果表明,采用该方法所制备的钙基吸收剂微观结构蓬松,更有利于增强吸收剂在高温碳酸化过程中的CO2吸附能力.新型复合吸收剂虽然MgO的掺杂量较小,但是仍然具有良好的循环反应性能,孔隙结构在碳化/煅烧过程中相对保持稳定.在30次碳化/煅烧循环后,其碳化效率达到66%,远高于普通分析纯CaO吸收剂.  相似文献   

18.
钙基CO2吸收剂循环反应特性的试验与模拟   总被引:3,自引:1,他引:2  
合成了3种不同质量配比的钙基CO2吸收剂CaO/ Ca12Al14O33,并对CaO/Ca12Al14O33、石灰石、白云石的循环煅烧/碳酸化特性进行试验研究,以考察吸收剂的转化率随循环反应次数的变化规律。试验结果表明,3种吸收剂反应活性均随循环反应次数的增加而降低;在850 ℃煅烧温度下,CaO/Ca12Al14O33(75%/25%)吸收剂在第10次循环后其循环转化率保持在51.7%左右;在900 ℃煅烧温度下,吸收剂活性下降较快,CaO/Ca12Al14O33的反应活性高于石灰石和白云石,且当CaO和Ca12Al14O33的质量比为75%/25%时最优。建立了吸收剂的循环转化率模型以及循环碳酸化过程动力学模型,为反应器的设计提供理论依据。  相似文献   

19.
控制和减缓化石能源燃烧所排放的CO2对于缓解全球变暖和温室效应具有重要意义。作为一种燃烧后CO2捕集技术,采用钙基吸收剂循环煅烧/碳酸化(cyclic calcination/carbonation reaction,CCCR)法捕集烟气中CO2的技术因其相对于胺吸收法有一定的经济性而受到关注。在对钙基吸收剂CCCR法的基本概念与特点介绍的基础上,对其中3个重要的研究内容与存在问题,即反应动力学、吸收剂循环转化率与吸收剂的改性以及双流化反应器的研究现状进行综述分析,指出应研究气固反应临界产物层的形成与生长规律,研制高循环反应活性、稳定性和机械强度且价廉及环境友好的吸收剂,开展钙基吸收剂CCCR法综合特性、与燃煤电厂系统组合与优化方案及其技术经济分析。  相似文献   

20.
钙基吸收剂循环煅烧/碳酸化反应是燃煤电站捕获CO2的最有效方法之一。为了解决吸收剂在吸收CO2过程中随着反应次数增加碳酸化能力迅速衰减的问题,采用溶胶凝胶燃烧合成法分别制备了2种复合钙基吸收剂:CaO/MgO(摩尔比10 1)和CaO/MnO2(摩尔比100 2)。研究不同反应条件对吸收剂循环碳酸化特性的影响,获得了最佳反应条件。研究表明,该方法制备的吸收剂微观结构蓬松,碳酸化性能大幅度提高,2种吸收剂随循环次数的增加转化率衰减缓慢,经过50次反应转化率仍高达0.792和0.758,约为石灰石的2.26和2.17倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号