首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
建立一种新型的发电系统结构——固体氧化物燃料电池(solid oxide fuel cell,SOFC)与质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)联合发电系统,在该联合系统中SOFC不但可产生电能,同时为PEMFC提供富氢的重整气产生额外电能,提高了燃料能量转换率,也节省了外置重整器的设备消耗。该文基于质量、能量平衡并耦合电化学知识建立了SOFC-PEMFC联合发电系统模型。详细讨论了系统参数(燃料利用率、空气与燃料流量比和燃料流量)对系统性能的影响。仿真结果表明,在本文设计工况下,SOFC-PEMFC联合发电系统的发电效率和系统能源综合利用效率分别为54%和723%,高于同一功率等级下的独立SOFC发电系统和重整器-PEMFC发电系统;另外,合理的空气与燃料流量比可以改善系统性能;SOFC燃料利用率为75%时,系统发电效率达到最大;燃料流量对系统发电效率基本没有影响。  相似文献   

2.
为了提高SOFC联供系统的综合利用效率和降低CO_2捕集能耗,提出一种基于SOFC循环的CO_2近零排放冷热电联供系统。建立了系统数学模型,给出了设计工况下各点的热力参数值,分析了燃料利用率、空燃比、燃料电池入口温度与工作压力变化对系统性能的影响。结果显示,在设计工况下,SOFC发电效率、联供系统净发电效率和一次能源利用率分别为51.59%、53.84%和72.01%,与没有CO_2捕集的联供系统相比,净发电量降低了3.66%,一次能源利用率降低了2.05%。变参数研究结果显示,随着工作压力的增加,SOFC的发电效率增大,而系统净发电效率和一次能源利用率减小;另外,增加空燃比会降低SOFC发电效率、系统净发电效率和一次能源利用率,所以在保证SOFC在正常工作情况下应选择较小的空燃比。在燃料利用率和阴极入口温度变化中,SOFC的输出功率和输出电压先增加后减少,而阳极入口温度变化对SOFC性能影响较小。  相似文献   

3.
提出了一种新的SOFC/GT/KCS联合循环发电系统,建立了该系统热力性能的数学模型,根据热力学第一定律和第二定律,利用EES软件仿真模拟对系统进行了能量分析、憥分析,并研究了空气流率、燃料利用率、燃料流率、压气机压比、水蒸气碳比的变化对联合循环热力性能的影响。研究结果表明,在设定工况下,SOFC的发电效率为49.2%,系统总发电效率为67.6%,系统总火用效率为68.16%;系统的各部件中,火用损失较大的部件依次为SOFC、后燃烧室、燃气轮机、预热器3和余热锅炉;当燃料利用率为0.85时联合循环系统的性能最佳;在一定范围内,随着空气流率、燃料流率或水蒸汽碳比的增加,联合循环系统的能量利用效率均降低。  相似文献   

4.
燃料电池-燃气轮机混合发电系统性能研究   总被引:11,自引:5,他引:6  
文章对由燃料电池和燃气轮机组成的混合发电系统的性能进行了分析。该混合系统采用的是底层循环方式,并于常压下工作。分析表明,在设计点工况,混合系统的发电效率为58.7%;在非设计点工况,其发电效率也能达到56%以上。在设计点工况下,混合系统的功率约有80%来自燃料电池电堆,20%由燃气轮机提供。在非设计点工况时,燃料电池发电功率占混合系统总输出功率的比例随着混合系统输出功率的减少而增大;混合系统可以在其输出功率不低于设计点功率80%的工况下运行。  相似文献   

5.
将生物质气化与熔融碳酸盐燃料电池(molten carbonate fuel cell,MCFC)构建为新型的生物质能高效清洁利用联合循环发电技术,气化产生的富氢气体作为MCFC的燃料,通过燃烧半焦以及MCFC中未利用的燃料为气化反应提供热量,进行生物质气化–MCFC联合循环发电系统的模拟研究。运用Aspen Plus软件搭建系统模型并计算,研究了燃料电池内重整及系统工作压力对系统性能的影响。结果表明:生物质气化–MCFC联合循环发电技术具有较高的系统发电效率,可达50%,比常规生物质气化驱动燃气轮机技术高出10个百分点;对于常压系统无需采用内重整,而对于增压系统,采用内重整对系统性能有较大改善;提高系统工作压力可改善其整体性能,最佳工作压力在0.8~1.2 MPa。  相似文献   

6.
通过查阅国内外在致力于提高SOFC发电效率方面的研究文献,并根据课题组的前期研究成果,基于商业软件Aspen Plus平台,搭建了IGFC-GT混合发电系统的电热联产系统模型图,分析了IGFC-GT混合发电系统的性能及进气温度对系统性能的影响,结果表明该系统具有较高的发电效率及能量利用率。  相似文献   

7.
以木片气化气为燃料,建立中温型固体氧化物燃料电池(intermediate temperature solid oxide fuel cell,IT-SOFC)/燃气轮机(gas turbine,GT)混合动力系统的详细模型,分析混合动力系统的运行性能,研究生物质气的组分和水碳比的变化对混合动力系统性能的影响。结果表明,在设计工况下,以木片气化气为燃料的IT-SOFC/GT混合动力系统的发电效率高达59.24%,具有较好的系统性能。生物质气组分的变化对混合动力系统性能影响很大,H2百分比的变化使系统输出功率变化幅度最大,CO和CH4相近,系统的发电效率随H2百分比增加略有上升,随CO和CH4百分比的增加下降明显。研究还表明,当水碳摩尔比([S]/[C])改变时,系统输出功率和发电效率随着[S]/[C]的减小而逐渐增加,但从系统运行安全性和寿命方面考虑,应选择适当的[S]/[C]值。  相似文献   

8.
固体氧化物燃料电池(SOFC)具有很高的理论能量转换效率,但是目前报道的实际SOFC单体性能远不能达到理论转换效率。从热力学理论及实验数据出发解释了SOFC单体性能远不能达到理论效率的原因,针对电压效率、电流效率和燃料利用率分别提出了相应的改进方法,为SOFC的进一步发展提供理论依据。其中温度对电压效率、电流效率和燃料利用率有重要的影响,提高温度可以提高这三者的值,但是提高温度将降低SOFC的热力学理论效率。  相似文献   

9.
煤基近零排放系统中固体氧化物燃料电池本体的模拟研究   总被引:1,自引:0,他引:1  
煤基近零排放(zero-emission coal,ZEC)系统采用固体氧化物燃料电池(solid oxide fuel cell,SOFC)进行清洁高效发电。以西门子发电集团研发的100 kW热电联产(combined heat and power,CHP)管式固体氧化物燃料电池堆为对象,采用ASPEN流程模拟软件借助FORTRAN编程搭建了SOFC本体模型,并依据文献报道的实际运行数据,对模型进行验证分析。结果表明,该SOFC模型具有良好的可靠性,可以用于后续ZEC系统的集成研究。同时该文就不同运行条件对SOFC工作性能的影响进行了分析,发现维持电池功率恒定,电池效率在燃料利用系数为0.8左右达到峰值;在其他条件不变时,增加电流密度会使燃料电池电压下降,燃料消耗量增加,电池效率降低,电池功率在电流密度约为3 500 mA时达到峰值;随着汽碳摩尔比的增加,乏燃料循环流率增加,初级重整炉出入口温度增加,甲烷转化率上升。  相似文献   

10.
熔融碳酸盐燃料电池是未来最具有吸引力的发电方法之一.基于(火用)分析的理论,在IPSEpro仿真平台下建立了熔融碳酸盐燃料电池/微型燃气轮机(MCFC/MGT)联合发电系统的稳态性能仿真模型.利用该模型对联合发电系统在额定工况和变工况下的稳态性能进行了仿真研究,分析了系统中各部件的不可逆性和系统的整体性能.仿真结果表明,MCFC/GMT联合发电系统具有较高的效率,且具有良好的变工况特性.  相似文献   

11.
苏鹏  林彬  赵炜  羊羿 《电源技术》2021,45(4):466-469
甲烷水蒸气重整固体氧化物燃料电池(SOFC)系统主要包含了甲烷水蒸气重整制氢/供气单元、SOFC电堆单元、电化学测试单元等,系统通过换热器将SOFC电堆单元的余热回收再利用,可实现能源的梯级高效利用,具有良好的发展前景.针对系统中影响因素较多的甲烷水蒸气重整供氢单元进行了研究,通过调整重整反应的不同重整温度、水碳比等影响因素,对比分析了不同工况下CH4转化率的变化规律;在最优工况下,实现了甲烷水蒸气重整制氢/供气单元和SOFC电堆单元的直接耦合,对SOFC电堆进行了性能测试,并对比分析了耦合后的系统性能,提出进一步的优化方案.  相似文献   

12.
采用ThermoFlex软件建立了基于两段式水煤浆气化技术的200MW级整体煤气化联合循环(IGCC)系统模型,研究了气化炉负荷变化对燃气轮机组、汽轮机组和IGCC系统性能的影响。结果表明,气化炉在较高负荷(100%、90%)工况下运行时,提高其二段给煤率γsc可以提高主蒸汽和再热蒸汽温度,降低厂用电率,使系统发电效率和供电效率得到提高;气化炉在低负荷(80%、70%、60%)工况下运行时,其γsc的变化对燃汽轮机(燃机)入口温度、排气温度、燃机发电率的影响较小,IGCC系统发电效率和供电效率随二段给煤率的升高呈先升高后降低的趋势,此时系统性能优势不明显。  相似文献   

13.
以利用生物质气的高温燃料电池-燃气轮机混合动力系统为研究对象,建立了系统的仿真模型,利用模型分析了系统性能以及关键运行参数、合成气成分对系统性能的影响,对系统进行了实验研究。结果表明利用生物质合成气的高温燃料电池-燃气轮机混合动力系统的设计效率可达54.1%。适当提高压比、电堆工作温度将显著提高系统效率,合成气中燃料组分构成对系统性能有很大影响。实验结果验证了所建立的混合动力系统的可行性,燃用燃料电池阳极排气的催化燃烧室具有很高的燃烧效率。这表明生物质气燃料电池-燃气轮机混合动力系统是一种高效可行的生物质能利用方式。  相似文献   

14.
整体煤气化联合循环(integrated gasification combinedcycle,IGCC)机组在一定情况下处于非设计工况运行。为了研究IGCC系统变工况特性,采用ThermoFlex软件建立基于两段式水煤浆气化技术的200 MW级整体煤气化联合循环系统模型,主要考查燃气轮机负荷、整体空分系数Xas、大气温度、大气压力对系统性能的影响。研究结果表明,降低燃气轮机负荷或者提高大气温度系统效率均呈先升高而后降低的趋势。整体空分系数Xas增加,机组发电效率降低。大气压力对系统效率影响较小。上述条件下采用两段水煤浆气化技术,系统性能可以得到有效改善。研究结果可为采用两段式水煤浆气化技术的IGCC系统的设计、运行提供参考。  相似文献   

15.
熔融碳酸盐燃料电池是未来最具有吸引力的发电方法之一。基于分析的理论,在IPSEpro仿真平台下建立了熔融碳酸盐燃料电池/微型燃气轮机(MCFC/MGT)联合发电系统的稳态性能仿真模型。利用该模型对联合发电系统在额定工况和变工况下的稳态性能进行了仿真研究,分析了系统中各部件的不可逆性和系统的整体性能。仿真结果表明,MCFC/GMT联合发电系统具有较高的效率,且具有良好的变工况特性。  相似文献   

16.
对固体氧化物燃料电池热电联供(solid oxide fuel cell combined heat and power,SOFC–CHP)系统的设计参数进行了研究,该系统由重整器、燃料电池电堆、燃烧室、2个热交换器及其它辅助设备组成。建立了系统的数学模型,以发电规模为70 kWe的系统为研究对象,运用析因试验的设计方法进行了计算机模拟试验,对系统的部分设计参数进行了析因分析。分析结果表明:影响系统发电功率的主要设计参数是燃料利用率和过量空气比率;影响系统热回收和电热比的主要设计变量是燃料利用率和水蒸汽与碳的比率,且这2个参数的交互作用较过量空气比率对系统影响显著;阴极排气再循环比率对系统热、电功率的影响甚微,不是系统的主要设计参数。整个研究工作为SOFC–CHP系统的合理设计提供了指导。  相似文献   

17.
电池利用率作为燃料电池系统控制器设计中的关键因素,它的取值决定了燃料电池是否能够安全、高效地运行。在充分考虑合理的电池利用率取值区间以及固体氧化物燃料电池(Solid Ox-ide Fuel Cell,SOFC)发电系统的动态模型之后,提出了针对燃料处理单元与直流变换器的控制策略,使得即使负载发生突变,也能保证电池利用率在限定的范围内,并表现出良好的负荷跟踪特性。基于SOFC并网的前级直流系统仿真,验证了文中控制方法的正确性与有效性。  相似文献   

18.
燃料电池 ,尤其是熔融碳酸盐燃料电池是 2 1世纪最有希望的发电技术。在简要叙述了熔融碳酸盐燃料电池发电系统的发电原理后 ,从以下方面对系统的开发进行了论述 :单体元件 (电极和电解质 )性能的提高 ,燃料的处理 ,余热利用 ,电力调节和并网 ,电池参数 (工作压力、温度、反应气体的组成和利用率、燃料气体湿度 )的控制与优化。介绍了熔融碳酸盐燃料电池发电系统的国内外研究现状 ,给出了天然气外部重整型和内部重整型燃料电池的循环模型。指出熔融碳酸盐燃料电池系统开发面临的主要课题 :延长寿命、降低成本、系统小型化、改善电能质量等 ,给出一种多段熔融碳酸盐燃料电池系统模型  相似文献   

19.
为提高燃料电池混合发电系统效率和改善燃料经济性,提出一种基于双DC/DC拓扑结构的燃料电池混合发电系统等效氢耗瞬时优化能量管理方法。该方法根据等效氢耗理论,在单位控制周期内实时分配燃料电池和锂电池输出功率,使得系统在单位控制周期内等效氢耗最小,并通过将该瞬时等效氢耗优化问题转换为双向DC/DC变换器的最优输出功率求解问题,实现了该方法的工程应用。在搭建的由燃料电池、锂电池、单向DC/DC变换器、双向DC/DC变换器以及能量管理器等组成的混合发电系统测试平台上,利用轨道机车工况开展了多指标性能测试与对比分析。实验结果表明,与状态机控制策略相比,基于等效氢耗瞬时优化的能量管理方法能够有效提高等效氢耗利用率和系统效率,并降低了锂电池运行压力,有效改善了系统燃料经济性和使用寿命。  相似文献   

20.
从压缩机压比、燃料利用率以及运行温度对系统工作性能影响的角度,对一种SOFC-GT-ST联合循环动力系统进行了热力系统性能的模拟分析.结果发现.压比为14、汽碳比为2.1、燃料利用率为0.85、SOFC运行温度不高于950℃的工况下,系统性能最优.将钙循环碳捕集工艺耦合入联合循环系统.在输入钙循环碳捕集系统中天然气设为定值的基础上,对影响系统碳捕集率以及发电率的各因素进行模拟分析.模拟了在不同碳化炉温度、煅烧炉温度、气固分离率、钙酸比以及驰放率诸因素的影响下,系统的碳捕集率和汽轮机组发电功率的变化,同时发现将一部分排气进行回流对冷流传热的做法可以提高循环效率.模拟确定了各因素最优解,即碳化炉温度为630℃、煅烧炉温度为950℃、气固分离率为98%、钙酸比设为1.1、驰放率设为0.02时,系统热力学性能以及碳捕集率最优,系统发电效率为60.32%,相比原始系统下降12.76%,系统碳捕集率达到90.36%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号