首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
绝缘栅双极型晶体管(IGBT)模块是电机控制器的核心部件,在工程应用中,常由于结温过高导致器件损毁,对控制器的可靠性影响重大。为探究IGBT模块内部的温度场分布,文章进行了损耗建模,并通过Fluent软件进行了结温估算。在控制器额定工况下,IGBT芯片最高结温约为113℃,IGBT与二极管芯片最高温度差接近10℃。同时分析了冷却液流速变化对电机控制器散热性能的影响,根据芯片最高温度及进出口压降,确定冷却液流速在1~2 m/s范围内为最佳区间,为电机控制器的散热性能设计提供参考依据。  相似文献   

2.
模块风冷热设计的主要目的是控制温度上限并尽可能地提高各单体之间的温度均匀程度,延长循环使用寿命.本文使用模块热仿真分析模型对比计算了 2P10S三元高比能电池模块不同工况下的冷却效果:自然冷却工况下1C放电结束时刻温升约15.5℃,单体间最大温差在2℃以内;强制风冷工况下温升比自然冷却工况降低约3℃,但单体间最大温差扩大至5℃以上;并通过模块热仿真技术对2P10S三元高比能电池模块的强制风冷技术进行了优化设计研究,发现使用流速为0.5m/s、温度为环境温度的冷却空气就可以满足散热的需要,且有助于保持较好的电池单体间温度一致性.  相似文献   

3.
本文针对18650锂离子电池建立了基于多风口的电池模块,并结合计算流体动力学(CFD)方法对模块结构进行了一系列优化。一方面探讨了进出口数量的变化对电池模块冷却性能的影响,与此同时也讨论了进出口的位置与尺寸的影响。结果表明,左右两侧进风底部两角落出风的进出口布局明显优于其它布局方式,且与基础模型相比最高温度降低8.250℃(17.9%),最大温差减小3.943℃(37.8%)。此优化后的模块结构可为强制风冷策略下的电池热管理系统提供有效参考。  相似文献   

4.
建立了超超临界机组自力式液动高加给水三通阀关闭瞬态动力学方程式,并采用MATLAB编程求解了动力学微分方程式,计算得到了三通阀关闭速度、关闭时间等重要特征参数。计算表明液动阀在毫秒级的时间内完成从静止到加速过程,此后以恒定速度完成阀的关闭。液压缸在35MPa高压差的作用下,最大阀芯最大关闭速度约为0.9m/s;液压缸进出口管径的大小对阀关闭时间有着重要的影响,应在合理设计进出口管径基础之上再选择适当的调节阀,以便精确控制阀关闭时间。  相似文献   

5.
利用有限体积法,对比分析双辊薄带连铸铸辊内冷却水环的布置形式及进、出口压力差对流场的影响。结果表明,进出口压力差为2.0 MPa时,沿流线方向水环内的平均流速逐渐增加,速度分布梯度最大;进、出口压力差为1.0 MPa时,沿流线方向水环内的平均流速逐渐降低,速度分布梯度降低;压力差为1.0 MPa,水环相对位置改变时,沿流线方向上各位置水环内平均流速的速度逐渐增加,速度分布梯度最小。  相似文献   

6.
对4种微通道散热结构(平行结构、网格结构、螺旋结构和树型结构)在相等传热面积、相同边界条件下的流场与温度场进行数值研究。通过热流耦合场数值分析,得出了不同微通道散热结构的电子芯片温度分布和微通道内的速度场,分析了微通道拓扑结构对电子芯片散热效果的影响。使用平行微通道散热的芯片温度均低于80℃,其中有81%的面积在60℃以下;使用网格和螺旋散热结构的芯片最高温度均在90℃以上,其中温度在20~60℃之间所占比例分别约为62%和61%;使用树型微通道散热的电子芯片温度均低于70℃,其中有94%的面积在60℃以下,且温度分布最均匀。此外,芯片微通道内的流体平均流速大的微通道系统能带走更多的热量。  相似文献   

7.
针对某涡轮增压器复杂薄壁燃进壳漏水现象,采用CFD流固耦合计算方法,分别仿真模拟了柴油机运行工况及增压器试验台运行工况温度、应力分布,并开展了试验测试。研究表明:燃进壳温度场分布均匀无突变,柴油机工况下燃进壳表面最高温度为212℃,最低温度为72℃,台位试验工况下,燃进壳表面最高温度为193.6℃,比柴油机工况减小18.4℃,台位试验测试与仿真模拟高度吻合,最大误差约为4.3%。应力计算表明:燃进壳应力分布均匀,柴油机工况下,最大等效应力为176MPa,最大等效应力小于材料屈服强度224MPa,安全系数1.27,台位试验工况下,最大等效应力分布在燃进壳冷却水流道,最大值约为230MPa。燃进壳理论计算应变与实际测试应变最大误差为4.11%,理论计算结果与实际测试结果吻合较好,燃进壳应力计算完全满足工程仿真精度要求,研究结成果为后续燃进壳寿命提升奠定理论计算基础。  相似文献   

8.
该文阐述了一种用于200MW核供热堆(NHR-200)堆芯冷却剂出口温度的软测量方法。两支铠装热电偶被置于燃料元件盒支承格子板侧面的空间正交沟槽中,用这两支热电偶所测得的温度计算堆芯燃料元件盒冷却剂的出口温度。此测量方法已通过实验验证,并得到了用于计算堆芯冷却剂出口温度的经验公式。对于NHR-200,堆芯燃料元件盒冷却剂出口温度的最大测量误差为1.7℃。  相似文献   

9.
以某18650锂离子动力电池组为研究对象,设计了一种液冷散热的方法,研究在高温环境下,电池大倍率放电时的散热效果,并探究三种不同的冷却液进出口位置和六种不同的散热管道位置对电池组散热性能的影响.结果表明:无论哪种冷却液进出口位置和散热管道位置均能使电池组最高温度、最低温度和最大温差分别不超过37℃、35℃和2.5℃;c...  相似文献   

10.
屏蔽电机泵中屏蔽套为关键部件之一,起物理隔离作用,其完整性对一回路的安全运行有着重要的影响。屏蔽套安装在主泵电机内,受到交变磁场、冷却剂流场等因素的综合作用,载荷条件复杂。通过屏蔽电机内电磁场的谐波分析,得到磁感应强度分布规律和作用于屏蔽套的电磁力分布规律。结果显示,在铁芯范围内沿电机圆周方向屏蔽套所受电磁力呈周期分布,以切向力为主,且定子屏蔽套所受电磁力大于转子屏蔽套;从铁芯指向绕组端部,屏蔽套所受电磁力逐渐减小,离开铁心端面对应的轴向位置后,减小速率最大。  相似文献   

11.
旋转式激振阀是高频高压电液激振系统的关键元件之一,其动态特性的好坏直接影响整个激振系统的工作性能。为了分析旋转式激振阀流-热-固多场耦合作用下的动态特性,首先基于Fluent仿真,通过滑移网格方法对旋转式激振阀的流场进行动态模拟,并实测旋转式激振阀流量对仿真结果进行验证,然后使用Ansys对旋转式激振阀进行流-热-固多场耦合仿真,探究进出口压差分别为ΔP=5 MPa、ΔP=10 MPa、ΔP=15 MPa和油液温度分别为20℃、40℃、60℃时旋转式激振阀的热特性与热变形规律。研究结果表明,旋转式激振阀内部流场和温度场分布不均匀,流体在接近阀芯阀体壁面处的温度较高,中心温度较低,旋转式激振阀出口处由于流体冲击产生局部高温,导致阀芯凹槽以及阀体出油口会有热变形,进出口压差ΔP=15 MPa时,热变形可达3.789 4μm;进油温度为60℃时,热变形可达7.701 7μm。因此选择合适的进出口压差和油液温度有利于旋转式激振阀的工作特性。该研究对于旋转式激振阀的结构设计和优化提供了理论数据。  相似文献   

12.
采用计算流体动力学方法研究阀杆倾角对角座阀流量特性的影响。分别采用数值模拟和实验测试,获得了在不同阀门进出口压差条件下,阀杆倾角为45°,55°和60°时阀内介质体积流量,对比验证了数值计算的准确性。在此基础上,对不同阀杆倾角条件下阀内的流场和阀门的通流能力进行分析。结果表明阀内的最高流速及速度场分布对阀门的通流能力具有重要影响:当阀杆倾角为45°时,阀内介质的流速最高,流量系数最大,流阻系数最小;阀杆倾角处于45°~60°范围时,随着角度的增加,角座阀的流量系数随之降低,流阻系数相应增加。对于该流道结构的角座阀,阀杆倾角推荐采用45°~50°的设计范围。  相似文献   

13.
针对某航空飞行器轴承工作转速120 000 r/min, 30次循环启停,寿命50 h的设计要求,开发了超高速角接触球轴承。通过动力学模型得到该轴承最大接触应力为2 200 MPa,钢球最大旋滚比为0.5,保持架最大碰撞力为18 N,保持架最大打滑率为8%,轴承疲劳寿命为55 h。试验表明该轴承振动加速度不高于19.6 m/s2,最高温度不高于100℃。动力学分析和试验结果均说明轴承满足设计要求。  相似文献   

14.
以铝合金汽车轮毂为研究对象,本文首先通过ABAQUS软件对轮毂进行几何建模,然后对轮毂进行有限元模型建立,通过静力学分析得到其最大应力为213MPa,符合铝合金性能要求,最后运用模态分析模块得到整车的固有频率及振型,计算分析结果表明轮毂结构的固有频率能有效避开各种激励频率,避免反生共振,验证其设计合理性。  相似文献   

15.
以硫化氢为目标污染物,运用CFD数值模拟对空气净化器内部气流进行模拟与分析。建立系统内部气流组织的网格模型,对滤网阻力特性进行实验研究与分析,采用Fluent软件对系统内部流场进行仿真,在空气流量340m3/h的工况下,得到不同进出口模型的速度场、压力场与出口污染物浓度。仿真结果:流速与压降均随着进出口尺寸的增大而减小,在Y=150mm截面上气流速度变化最大。与矩形进出口相比较,圆形进出口内部气流较为稳定,出口污染物浓度更低。为了使系统内部气流稳定,减少涡流效应与气流叠加现象,应使进出口尽可能地覆盖风道主体。根据模拟仿真结果,可以对空气净化器结构与净化模块进行合理的优化设计。  相似文献   

16.
建立滚珠丝杠系统的热-结构耦合分析有限元模型,通过热分析得到滚珠丝杠系统中螺母的温度最高,约为24.657℃,温升为4.657℃;左右轴承的温度约为24.14℃,温升为4.14℃;滚珠丝杠与螺母和轴承接触部分的温度较高,大约22.587℃,其余部分的温度不超过21.552℃.然后将分析得到的温度作为载荷加到模型上进行热-结构耦合分析,得到热变形量最大的地方位于螺母上,最大热变形量达到4.9μm;而丝杠的热变形比较小,由于受到螺母传导热的影响,最大变形发生在靠近螺母处,大约为1.633 μ m.  相似文献   

17.
为得到鼠笼异步磁力联轴器工作时内部温度分布情况,首先通过理论计算确定了该联轴器的热源、导热系数和散热系数,然后借助ANSYS软件对其进行三维温度场模拟分析,得到磁力联轴器整体和各部分的温度分布,并通过场分析法,将温度场沿定义的路径进行映射,得到不同路径下的温度分布规律。结果表明:导条的最高温度为82.42℃,永磁体的最高温度为51.47℃,远小于永磁体的居里温度。沿径向由内转子轴孔到外转子外边界,温度分布是先高后低,具有明显的区域性,导条区域的温度最高且温差最小,气隙区域的温差最大;沿导条周向的温度分布呈周期性变化,其曲线近似为正弦曲线,周期为导条数。分析结果对大功率下的鼠笼异步磁力联轴器的温度场分析具有指导意义。  相似文献   

18.
应用裂纹柔度法测量了7055-T7751铝合金预拉伸板的内部残余应力。结果表明,该板材内部残余应力近似呈外压内拉的"W型曲线"分布,其中,轧制方向最大残余拉应力约为31.3 MPa,最大残余压应力约为-23.7 MPa,宽度方向最大残余拉应力约为7.1 MPa,最大残余压应力约为-12.8 MPa。相比较于其他典型7×××系列铝合金预拉伸板,7055作为目前合金化程度最高、强度也最高的铝合金,在提高性能的同时,内部残余应力也相应提高,导致加工变形较大。  相似文献   

19.
采用热-结构顺序耦合对货车高摩擦因数合成制动闸瓦在紧急制动工况和长大坡道调速制动工况下进行热应力仿真分析。结果表明:在紧急制动工况下,闸瓦的最高温度出现在制动28s后,为206.2℃,最大应力出现在制动32 s后,为15.4 MPa;长大坡道调速制动时,最高温度和最大应力都出现在制动结束时,分别达到594.8℃、55.6MPa。仿真结果与实验结果一致,较为真实地反映了整个过程中闸瓦的瞬态温度和应力变化情况,且闸瓦一次制动满足要求。  相似文献   

20.
采用热-结构顺序耦合对货车高摩擦因数合成制动闸瓦在紧急制动工况和长大坡道调速制动工况下进行热应力仿真分析。结果表明:在紧急制动工况下,闸瓦的最高温度出现在制动28s后,为206.2℃,最大应力出现在制动32 s后,为15.4 MPa;长大坡道调速制动时,最高温度和最大应力都出现在制动结束时,分别达到594.8℃、55.6MPa。仿真结果与实验结果一致,较为真实地反映了整个过程中闸瓦的瞬态温度和应力变化情况,且闸瓦一次制动满足要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号