共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
针对过程数据的多模态和非线性的特征,提出了改进的局部近邻标准化和PPA结合的过程故障检测方法.首先寻找每个样本的第一近邻样本,再寻找第一近邻样本的局部前k近邻集,用近邻集的均值和标准差进行数据标准化,最后使用主多项式分析(PPA)对标准化处理后的数据建模,计算T2和SPE统计量,并确定控制限进行故障检测.主多项式分析使... 相似文献
3.
4.
针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新的数据集中应用DPCA方法确定T2和SPE控制限进行故障检测。LNS方法能够消除过程的多模态特征,使得标准化后数据近似服从多元高斯分布,且保持过程离群点偏离正常样本轨迹;而结合DPCA方法则能够提高对具有动态特性过程的监视性能。利用数值例子和青霉素发酵过程进行仿真,并将测试结果与主元分析法(PCA)、DPCA、K近邻故障检测(FD-KNN)等方法进行对比分析,验证了LNS-DPCA方法的有效性。 相似文献
5.
本文将动态主元分析(Dynamic Principal Component Analysis, DPCA)和稀疏主元分析(Sparse Principal Component Analysis, SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测。所提出的稀疏动态主元分析方法通过对过程数据的动态增广矩阵进行稀疏主元的求解,获取稀疏的负荷向量,该方法既考虑到了过程数据的动态特性,又降低了过程数据的冗余度,同时降低了计算负荷,非常适合工业过程的实时故障检测。此外,本文还提出了一种前向选择算法,用于确定稀疏主元中的非零负荷数目。最后,将所提出方法应用于数值例子和田纳西-伊斯曼过程,并将与主元分析、动态主元分析和稀疏主元分析等三种方法相比较,表明所提方法可以获得更好的故障检测效果。 相似文献
6.
针对协方差结构具有显著差异的多模态过程故障检测问题,本文提出一种基于密度标准误差的局部保持投影故障检测策略(LPP-DSE).首先,根据样本距离矩阵确定样本截止距离;接下来,应用截止距离计算每个样本的本质密度及其前k近邻样本的估计密度;最后,通过样本的密度误差及其k近邻密度的标准差构建统计量并完成过程监控.本文方法通过应用局部保持投影(LPP)对过程数据进行维数约减可以保证过程监控的及时性;同时,通过设计密度标准误差(DSE)统计量可以有效提高多模态过程的故障检测率.此外,本文给出基于贡献图的诊断方法能够准确识别故障发生的原因.通过数值例子和半导体工业实例测试,并与主元分析、邻域保持嵌入、局部保持投影、k近邻故障检测等方法比较,实验结果进一步验证了LPP-DSE方法的有效性. 相似文献
7.
8.
9.
10.
针对化工过程中的数据存在的多模态特性,提出基于模糊C均值(FCM)与主成分分析(PCA)的故障检测方法。首先,通过FCM算法将具有多模态特性的训练样本进行聚类,根据所有样本到聚类中心的距离计算样本所属于每个聚类中心的隶属度。其次,以隶属度作为判定依据判断样本所属类别,将训练样本分成若干类别。再次,对每一个分类后的类别进行标准化处理并建立模型,通过核密度估计法确定每一个类别的控制限。最后,将待测样本划分类别,计算样本在各类别下的Hotelliing’s T和平方预测误差(SPE)(又称Q统计量),并与控制限比较以实现故障检测。将该方法运用于数值例子和田纳西-伊斯曼(TE)工业过程并将检测结果与PCA方法进行了对比分析。对比结果表明,该研究的故障检测率大幅提升。FCM算法通过对原始数据分类,有效地提升了PCA对具有多模态特性数据的处理能力。 相似文献
11.
基于混合动态主元分析的故障检测方法 总被引:1,自引:0,他引:1
针对基于动态主元分析的故障检测方法存在的主元个数较多以及计算效率低等问题,本文提出基于混合动态主元分析(Hybrid Dynamic Principal Component Analysis,HDP-CA)的复杂过程故障检测方法。该方法采用分步策略消除数据之间的自相关和互相关性,提高了故障检测的精度和效率。对TE过程典型故障和热连轧过程中断带故障检测结果表明:HDPCA方法提取的主元个数少于DPCA方法提取的主元个数。并且,基于HDPCA的T2和SPE统计量的检测性能和检测精度都由于基于DPCA的统计量。因此,本文提出的方法可以准确有效地检测出故障。 相似文献
12.
主元个数是PCA模型的关键参数,其选取直接决定PCA的故障诊断性能;针对传统主元个数选取方法主观性较大,且不考虑故障诊断要求的缺点,提出一种改进的主元个数确定方法;该方法将传统的累积方差贡献率与故障检测率相结合,首先利用累积方差贡献率初步确定主元个数,然后确定满足故障检测率要求的主元个数,将两个主元个数进行比较,从而获得最佳主元个数;与单纯累积方差贡献率方法相比,提高了主元模型的精度,减少了以往方法中人为因素的影响;通过对卫星控制系统的故障检测,证实了该方法可大大提高故障检测准确率。 相似文献
13.
针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性. 相似文献
14.
针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性. 相似文献
15.
针对传统的动态核主成分分析(Dynamic Kernel Principal Component Analysis)用于大样本数据集的故障检测时,占用计算机内存大、计算复杂度高等不足,提出一种基于特征子空间的DKPCA算法。该方法通过构建具有较小维数特征子空间上的正交基来简化核矩阵K,从而降低DKPCA的计算复杂性。与DKPCA方法相比,该方法具有更高的计算效率且只需较小的计算机存储空间。将该方法应用于TE(Tennessee Eastman)过程,仿真结果显示,二者诊断结果大致相同,而所需时间大大减小,说明了本算法的有效性。 相似文献
16.
提出基于改进核主元和支持向量数据描述(SVDD)故障检测方法,适合于复杂工业过程具有非线性和非高斯性的情况.首先,通过对核主元(KPCA)特征空间样本进行重构误差,在样本集上自动识别异常值,减少对KPCA算法的影响并增强非线性核映射.然后,利用支持向量数据描述算法处理数据非高斯信号,据此构建统计量对工业过程进行检测.最后,将所提出的改进核主元和支持向量数据描述方法应用于田纳西-伊斯曼(TE,Tennessee Eastman)过程的仿真实验,结果说明提出方法的有效性. 相似文献
17.
在针对将核主元分析(kernel principal components analysis, KPCA)与基于高斯分布的控制限(control limits,CLS)相结合会降低其性能的问题,提出了一种基于核主元分析与核密度估计(kernel principal components analysiskernel density estimation, KPCA-KDE)相结合的非线性过程故障监测与识别方法.该方法采用核密度估计(kernel density estimation, KDE)技术来估计基于KPCA的非线性过程监控的CLS.通过研究KPCA和KPCA-KDE所有20个故障的检出率发现,与相应的基于高斯分布的方法进行比较, KDE具有较高的故障检出率;此外,基于KDE的检测延迟等于或低于其他方法.通过改变带宽和保留的主元数量进行故障检测, KPCA记录的FAR值较高,相反, KPCA-KDE方法仍然没有记录任何假报警.在田纳西伊斯曼过程(Tennessee Eastman, TE)上的应用表明,KPCA-KDE比基于高斯假设的CLS的KPCA在灵敏度和检测时间上都具有更好... 相似文献
18.
In practical process industries, a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes, which indicates that the measurements coming from different sources are collected at different sampling rates. To build a complete process monitoring strategy, all these multi-rate measurements should be considered for data-based modeling and monitoring. In this paper, a novel kernel multi-rate probabilistic principal component analysis (K-MPPCA) model is proposed to extract the nonlinear correlations among different sampling rates. In the proposed model, the model parameters are calibrated using the kernel trick and the expectation-maximum (EM) algorithm. Also, the corresponding fault detection methods based on the nonlinear features are developed. Finally, a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method. 相似文献