首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 382 毫秒
1.
通过研究了表面包覆钴和未包覆的A2B7型贮氢合金La1.5Mg0.5Ni7电极的电化学性能,同时对包覆钴贮氢合金进行低温退火的研究。结果表明:表面包覆钴贮氢合金电极放电容量明显提高,但合金循环寿命并未得到改善;与镀态合金相比,经低温退火处理的合金电极放电容量变化不大,但循环寿命较镀态合金有所改善。SEM结果表明:化学镀Co镀层为晶态,且镀层晶粒细小,经退火处理,晶粒长大,应力减小。  相似文献   

2.
马志鸿  李波  赵栋梁  胡锋  张羊换 《电源技术》2012,36(8):1111-1115,1208
为了改善Mg2Ni型合金的电化学贮氢性能,用La部分替代Mg,并用铸造及快淬工艺制备了Mg2-xLaxNi(x=0、0.2、0.4、0.6)贮氢合金。用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构,用程控电池测试仪测试了合金的电化学贮氢性能,研究了快淬工艺对合金结构及电化学性能的影响。结果发现,La替代Mg明显地改变Mg2Ni型合金的相组成。当x≤0.2时,La替代Mg不改变合金的主相Mg2Ni,但出现少量的LaMg3及La2Mg17相;当La替代量x≥0.4时,合金的主相改变为(La,Mg)Ni3+LaMg3相。La替代Mg提高了Mg2Ni合金的非晶形成能力,快淬态合金均具有明显的纳米晶/非晶结构。快淬对合金电化学性能的影响与合金的成分相关,快淬显著地提高了Mg1.8La0.2Ni合金的电化学贮氢性能,但对于Mg1.4La0.6Ni合金,快淬导致了完全相反的结果,这主要与La替代使合金的主相发生改变相关。  相似文献   

3.
两步法制备Mg-Ni系贮氢合金及其表面改性   总被引:3,自引:0,他引:3  
彭成红  罗堪昌  曾美琴  张耀  朱敏 《电源技术》2003,27(Z1):151-153
采用先在高温下烧结使元素充分扩散,然后再球磨的两步法制备了一系列的Mg Ni系贮氢合金Mg2Ni、Mg1.7 Al0.3Ni、Mg1.7Ti0.3Ni和Mg1.9Ti0.1Ni0.8Al0.2,研究了将Mg2Ni用Ti、Al部分替换Mg和化学镀对合金电极的影响,并对试样进行了XRD分析和电化学性能测量。结果表明Mg1.7Al0.3Ni合金中形成一种新相,该相具有面心立方结构,晶格常数为0.604nm,Mg1.7Al0.3Ni的电化学容量较高,这应与这种新相的形成有关。这一结论对用两步法制备Mg Ni系贮氢合金有意义。该合金经次磷酸钠作还原剂的碱性化学镀镍后,电化学容量有非常明显的提高,但对循环稳定性的改善不明显。  相似文献   

4.
安富强  李平  郑雪萍  曲选辉 《电池》2007,37(2):115-117
用熔炼法制备了La0.7Mg0.3Ni2.5 xCo0.5(x=0,0.1,0.2,0.3)贮氢合金.采用X射线衍射和三电极测试体系研究了合金的相结构、贮氢性能和电化学性能.结果表明:该系列合金均由(La,Mg)Ni3相、LaNi5相及少量杂质相组成;合金的贮氢容量随x值的增大而增加,当x=0.3时,贮氢容量达到1.42%,合金的最大放电容量可达377.5 mAh/g.该系列合金的活化性能较好(活化次数均为1次).随着x值的增加,合金的平台性能和稳定性能减弱.  相似文献   

5.
张龙  赵熙然  傅宇晨 《电源技术》2021,45(8):1027-1030,1086
采用X射线衍射仪、扫描电镜和电化学工作站等手段,研究了高压处理对电池负极材料La0.68Mg0.32Ni3.2储氢合金物相组织、显微组织和电化学性能的影响.结果表明:铸态La0.68Mg0.32Ni3.2储氢合金主要由(La,Mg)Ni3和(La,Mg)2Ni7相组成,并含有少量(La,Mg)5Ni19、LaNi5和(La,Mg)Ni4相;高压处理后La0.68Mg0.32Ni3.2储氢合金中(La,Mg)Ni3相含量增加而(La,Mg)2Ni7相相含量减少,且压力越大则(La,Mg)Ni3相含量越高、(La,Mg)2Ni7相含量越少;1 GPa压力下La0.68Mg0.32Ni3.2储氢合金电极的最大放电容量要明显高于3和5 GPa压力处理后的合金电极;1 GPa压力下合金电极循环100周后的容量保持率(S100)最大,而3和5 GPa压力下合金电极的S100甚至低于铸态合金电极.高压处理后La0.68Mg0.32Ni3.2储氢合金电极的电催化活性明显提高,电极的动力学性能比铸态合金电极更好;高压处理态La0.68Mg0.32Ni3.2储氢合金电极的氢扩散速率相较于铸态储氢合金电极有所减小,La0.68Mg0.32Ni3.2储氢合金电极的高倍率放电性能与氢扩散系数有关.  相似文献   

6.
李守英  李全安  李克杰 《电池》2006,36(2):132-134
研究了化学镀镍对两种低钴贮氢合金粉末颗粒形态和放电性能的影响。结果表明:化学镀镍能提高低钴贮氢合金的循环稳定性、放电电位以及合金的高倍率放电性能,活化性能也有所改善。化学镀镍后,1C倍率放电容量达到0.4C放电容量的98.42%,表明化学镀镍是提高低钴贮氢合金高倍率放电的重要途径。化学镀镍后,一种合金的放电容量提高了27.0 mAh/g,另一种合金的放电容量降低6.5 mAh/g。SEM分析表明:合金在化学镀镍过程中发生吸氢反应,导致某些合金粉末开裂与粉化,以及有效合金量减少。有效合金量的减少是合金粉末放电容量降低的一个重要原因。  相似文献   

7.
钱文连 《电源技术》2011,35(5):531-533,618
用单辊快淬法制备了La0.62-xCe0.27Pr0.03Nd0.08Mgx(Ni0.81Co0.06Mn0.07Al0.06)5.2贮氢合金,采用X射线衍射光谱法(XRD)、场发射扫描电子显微镜(FESEM)、夹片式模拟开口电池测试体系研究了合金的相结构及电化学性能。XRD分析表明,微量Mg(x=0.03)替代La后,合金主相仍为CaCu5型六方结构,同时出现了极微量的A2B7型第二相;使合金的结晶度有所提高,主相晶胞体积V从0.08807nm3降低到0.08792nm3,c/a轴比从0.8082增加到0.8112。电化学性能测试显示,Mg替代La后合金的最大放电容量从329.4m Ah/g(x=0.00)依次降低到313.2m Ah/g(x=0.03),而循环寿命从146周期(x=0.00)明显增加到245周期(x=0.03),主要缘于晶胞c/a轴比增大使吸氢体积膨胀减小进而合金抗粉化能力提高、结晶度提高使合金抗腐蚀能力提高,以及相对较小的贮氢量引起小的晶胞体积膨胀使合金粉化驱动力减小。  相似文献   

8.
高性能贮氢合金电极的成分设计   总被引:2,自引:0,他引:2  
MH Ni电池的关键技术是负极材料———贮氢合金 ,而贮氢合金的性能主要取决于它的成分。从MH电极失效分析和MH Ni电池对负极材料的性能要求出发 ,详细讨论了AB5 型贮氢合金的各项性能与各种合金元素之间的关系 ,这些性能包括贮氢合金的吸氢量、平衡氢压、吸放氢滞后性、单胞体积和轴比c/a的大小、显微硬度、耐蚀性、高倍率放电性能及合金电极的温度特性等。同时对非化学计量比贮氢合金和低Co、无Co贮氢合金也进行了讨论。指出了合金成分设计应考虑的各个方面。  相似文献   

9.
通过感应熔炼和退火的方法制备了2H-A2B7和3R-A2B7相共存的La0.58Nd0.13Mg0.26Ni3.4合金,研究了退火温度对La0.58Nd0.13Mg0.26Ni3.4合金物相组成、电化学和动力学性能的影响.结果 表明:不同退火温度下La0.58Nd0.13Mg0.26Ni3.4合金的物相组成都为Gd2Co7型3R-A2B7和Ce2Ni7型2H-A2B7相,随着退火温度的升高,2H-A2B7相含量逐渐升高、3R-A2B7相含量逐渐减小,3R-A2B7相逐渐向2H-A2B7相转变.A2B7-1和A2B7-4合金都只存在一个放氢平台,而A2B7-2和A2B7-3合金都包含两个放氢平台;随着退火温度升高,La0.58Nd0.13Mg0.26Ni3.4合金电极的HRD1 440、C1 440和I0都表现为先增加而后减小的趋势,在退火温度为950℃时取得最大值,合金电极具有最佳的电催化活性.氢扩散不是合金电极的动力学控制要素,而合金电极的高倍率放电性能主要由交换电流密度I0决定.  相似文献   

10.
利用高分子导电聚合物的聚合反应对镁系贮氢合金Mg1.8Nd0.2Ni进行表面处理,采用SEM对合金颗粒表面的微观结构进行观察,合金表面形成了一层聚苯胺导电高分子包覆层。研究了不同表面处理时间和处理方式对合金电化学性能的影响,实验表明表面处理能提高材料的抗氧化、抗腐蚀性能,改善电极电化学反应性能延长电极的使用寿命。表面处理提高了合金的活化性能与循环稳定性,容量保持率从77.82%提高到86.31%。EIS图表明包覆层增加了电极表面电荷转移阻抗。Tafel极化曲线中腐蚀电位明显右移,抗腐蚀性能提高,导电高分子层的网状结构加速了氢原子的传导并且阻止了合金表面氧的渗透。另外通过动电位极化曲线发现,表面处理工艺使合金的内部缺陷得到了优化,氢在体相内的扩散速率明显增加。  相似文献   

11.
MH-Ni电池失效的电化学分析   总被引:7,自引:0,他引:7  
通过对失效MH Ni电池的解剖 ,用电化学方法研究分析了贮氢合金表面处理对充放电循环寿命终止时MH Ni电池负极的充放电性能和极化性能的影响。负极充放电曲线表明未处理贮氢合金电极的表面已严重氧化 ,其极化电阻大约是处理贮氢合金电极的 3~ 4倍。而经表面处理的贮氢合金电极仍具有良好的充放电性能和小的极化电阻。说明表面处理抑制了充放电循环过程中贮氢合金表面的氧化  相似文献   

12.
铜包覆 AB_5 型金属氢化物电极的电化学性能研究   总被引:9,自引:1,他引:8  
通过改变处理溶液中铜的含量和pH值等包覆条件,考查了AB5型贮氢合金酸性包覆铜处理方法和相应金属氢化物电极的放电性能。研究表明该方法具有经济易操作的特点,处理溶液的pH值对铜包覆速度和电极初期放电性能有很大影响。通过循环伏安实验和紫外可见光谱技术研究了包覆铜层的稳定性,实验结果表明电极表面包覆层能通过形成氧化物,以CuO2-2的形式溶解到电解液中,并且溶解在电解液中的铜离子对氧化镍正极的电极性能产生不良影响。  相似文献   

13.
研究了化学镀Ni处理对Mg2Ni贮氢合金电化学性能的影响,结果发现:化学镀Ni处理可显著提高Mg2Ni合金的放电容量,但不能有效提高合金的循环寿命;放电电流对经化学镀Ni处理的Mg2Ni合金的循环寿命影响较大.XRD和SEM分析表明:经化学镀Ni处理的Mg2Ni合金表面覆盖有一层致密的金属Ni细小颗粒;循环伏安(CV)和电化学阻抗谱(EIS)分析表明:化学镀Ni处理降低了合金表面的电子转移阻抗和氢原子扩散阻抗,提高了合金表面的电化学反应活性.  相似文献   

14.
甲酸处理对储氢合金和电池性能的影响   总被引:1,自引:0,他引:1  
郭靖洪  刘多然  陈德敏  段秋生  刘国忠  杨柯 《电池》2002,32(Z1):103-104,107
采用甲酸和甲酸与氨水混合体系对储氢合金进行表面处理.实验结果表明采用该方法对储氢合金进行表面处理,合金表面形成富金属Ni和Co催化层,同时也增加了合金比表面积;合金电极在碱液中的电化学反应速度和抗氧化能力提高,氢原子在合金本体中的扩散加强,这不但提高了储氢合金高倍率放电能力,而且改善了MH/Ni电池循环寿命、大电流放电能力和低温放电能力.  相似文献   

15.
张芙蓉  马立群  黄光亮  丁毅 《电池》2008,38(2):106-108
研究了AB5型稀土贮氢材料Mm(NiMnCoAl)5与10%的Ni混合球磨(150 r/min)1 h后的复舍贮氢合金的晶体结构和电化学性能.结果表明:复合贮氢合金由CaCu5型LaNi5相和单质Ni相组成,活化性能得到改善,高倍率放电性能有所提高;0.2 C、3 C放电比容量分别从稀土贮氢材料的272.8 mAk/g,247.2 mAh/g增加到289.8 mAh/g、273.6 mAh/g,容量保持率从稀土贮氢材料的90.6%提高到94.4%.  相似文献   

16.
低钴储氢合金的研制   总被引:1,自引:1,他引:0  
研究了不同生产工艺制造的低钴储氢合金对MH/Ni电池性能的影响以及与高钴佬氢合金特性的比较。试验结果表明低钴储氢合金冷却速度快,合金化学成份均匀,循环寿命高,但降低了合金活性、电化学放电容量和高倍率放电能力。采用普通浇注的低钴热处理储氢合金的MH/Ni电池的高倍率放电能力和荷电保留优于高钴热处理储氢合金,但循环寿命低于高钴热处理储氢合金。  相似文献   

17.
球磨镁基贮氢合金的研究   总被引:1,自引:0,他引:1  
韩晓英  张羊换  王新林  王国清 《电池》2006,36(3):170-172
在空气中用机械合金化制备了Mg2Ni贮氢合金,并用XRD、SEM、TEM和充放电测试等研究了合金的组成、结构和电化学性能。在非真空和没有保护气的条件下球磨,得到的Mg2Ni贮氢合金具有良好的活化性能及较高的贮氢容量。随着球磨时间的增加,容量也相应增加,当球磨30 h时,合金容量可达482.75 mAh/g,但在碱液中的氧化、腐蚀,使其容量衰退很快,循环稳定性不理想。  相似文献   

18.
贮氢合金电极的循环伏安和交流阻抗研究   总被引:4,自引:0,他引:4  
贮氢合金电极的表面处理是改善其电化学性能的有效方法。通过MH电极的循环伏安和电化学阻抗谱研究了碱性溶液中MH电极表面还原处理对其电化学性能的影响。结果表明MH电极表面还原处理后 ,提高了电极的充电效率 ,改善了电极表面的电化学反应活性。通过对MH电极电化学阻抗谱的分析 ,发现这种处理明显降低了电极表面的电化学反应阻抗。  相似文献   

19.
MH电极的交流抗阴搞图谱由两个半圆组成,低频区大半圆对应于氢的吸收过程,高频区小半圆对应于电化学反应过程.对于MLNi_(4-x)MnAl_x电极,随着Al含量的增加,阻抗图谱低频半圆明显增大,而高频半圆几乎不变;此外、电极的循环次数、充放电状态等对阻抗图谱均有较大影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号