首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large number of design parameters encountered in practice. This study aimed to develop a numerical model that can reliably predict the airflow and thermal performance of the integrated system during the design stage. The model was validated by experiments under different operating conditions. The validated model was further applied to evaluate the effects of different design parameters, including the U-value of the diffuse ceiling panel, plenum height, plenum depth, and inlet configuration. In the integrated system, diffuse ceiling separated the radiant ceiling from the rest of the room and consequently changed the energy efficiency of the radiant system. The simulated results demonstrated that using ceiling panel with a higher U-value can minimize this impact and make the system to cool down space efficiently. Low plenum height was beneficial to the energy efficiency, but aggravated the non-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces.  相似文献   

2.
The temperature and humidity independent control (THIC) system, which controls indoor temperature and moisture separately, may be an attractive alternative to existing conventional HVAC systems for its prominent improvement on the overall system performance and utilization of low grade energy resources. In order to verify the effectiveness of THIC system, a pilot project has been implemented in an office building in Shenzhen, China. In the system, liquid desiccant fresh air handling units driven by heat pumps are utilized to remove the entire latent load of outdoor air supplied for the whole building, and chilled water at the temperature of 17.5 °C from chiller is pumped and distributed into dry fan coil units and radiant panels to control indoor temperature. This paper presents the results of field test of the system, which shows that the system can provide a comfortable indoor environment even in very hot and humid weather. The COP of the entire THIC system can reach 4.0. According to the energy usage data recorded from the year 2009, the energy consumption of the THIC system in the tested office building was 32.2 kWh/(m2 yr), which demonstrates magnificent energy-saving potential compared with the conventional air-conditioning system (around 49 kWh/(m2 yr)).  相似文献   

3.
办公建筑中吊顶辐射空调系统夏季工况性能测试研究   总被引:1,自引:0,他引:1  
以办公建筑中实际使用的一套金属吊顶辐射板+新风的空调系统为研究对象,对夏季运行工况进行了测试研究。分别对比分析了高温和高湿气象条件下办公建筑室内的温湿度分布,比较了不同高度和不同位置处的温湿度场,在测试条件下,室内有良好的热舒适性。  相似文献   

4.
In this paper, in order to make guidelines for designing a low-energy radiant cooling system with an air-handling unit (AHU) for dehumidification, we investigated the impact of various air-conditioning parameters on the exergies of chilled water supplied to radiant panels and a cooling coil. The cooling load, thermal comfort index PMV, relative humidity, area of radiant panels, sensible heat factor (SHF), temperature and air-flow rate of supply air of the AHU, and presence/absence of total heat exchanger were considered. We used computational fluid dynamics (CFD) code in order to analyze the indoor air-flow and thermal environments, and added models for the calculation of thermal transfer to radiant panels and a cooling coil. Furthermore, a feedback control algorithm was introduced to calculate the surface radiant panel temperature, targeting the average PMV of the task area in an office room. As a result, the impact of various air-conditioning parameters on the exergies of chilled water were demonstrated quantitatively. As an example, by reducing the cooling load rate from 100% to 57% and 27%, the exergy of chilled water decreased by 47% and 67%, respectively.  相似文献   

5.
In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation.  相似文献   

6.
In this paper, we have developed a calculation method for estimating heat fluxes from ceiling radiant panels, using pipe density on panels and the temperature difference between the room air and the supply water. We then measured heat fluxes from panels in an environmental test room. After comparing the values estimated by our calculation method to the experiment's data, the calculated values closely match the values obtained from experiments, which means that this calculation method is practical in estimating the radiant panel performance in the design phase.  相似文献   

7.
冰蓄冷辐射供冷系统的综合评价   总被引:1,自引:0,他引:1  
日本办公建筑的空调耗电占其总耗电的50%以上,尤其在夏季是加剧电力需求高峰的主要因素。为了平衡负荷,电力生产部门和政府都在致力提倡蓄热空调系统。介绍了东京一座典型办公楼的与冰蓄冷系统结合的辐射供冷系统,包括其均衡负荷的作用,节能的潜力,施工及运行费用的估算等。  相似文献   

8.
The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements.The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions of occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber.Heat transfer coefficient may be expressed separately for radiation and convection or as one total parameter, but this choice may lead to different considerations about thermal performance of the system. In order to perform correct evaluations, it is therefore extremely important to use the proper reference temperature.The obtained values confirm tendencies found in the literature, indicating limitations and possibilities of radiant ceiling systems improvement.  相似文献   

9.
Different types of heating, ventilation, and air-conditioning (HVAC) systems consume different amounts of energy yet they deliver similar levels of acceptable indoor air quality (IAQ) and thermal comfort. It is desirable to provide buildings with an optimal HVAC system to create the best IAQ and thermal comfort with minimum energy consumption. In this paper, a combined system of chilled ceiling, displacement ventilation and desiccant dehumidification is designed and applied for space conditioning in a hot and humid climate. IAQ, thermal comfort, and energy saving potential of the combined system are estimated using a mathematical model of the system described in this paper. To confirm the feasibility of the combined system in a hot and humid climate, like China, and to evaluate the system performance, the mathematical model simulates an office building in Beijing and estimates IAQ, thermal comfort and energy consumption. We conclude that in comparison with a conventional all-air system the combined system saves 8.2% of total primary energy consumption in addition to achieving better IAQ and thermal comfort. Chilled ceiling, displacement ventilation and desiccant dehumidification respond consistently to cooling source demand and complement each other on indoor comfort and air quality. It is feasible to combine the three technologies for space conditioning of office building in a hot and humid climate.  相似文献   

10.
As a high-efficiency air-conditioning scheme, the variable refrigerant flow (VRF) air-conditioning system is finding its way in office buildings. However, there is no well-known energy simulation software available so far which can be used for the energy analysis of VRF. Based on the generic dynamic building energy simulation environment, EnergyPlus, a new VRF module is developed and the energy usage of the VRF system is investigated. This paper compares the energy consumption of the VRF system with that of two conventional air-conditioning systems, namely, variable air volume (VAV) system as well as fan-coil plus fresh air (FPFA) system. A generic office building is used to accommodate the different types of heating, ventilating, and air-conditioning (HVAC) systems. The work focuses on the energy consumption of the VRF system in the office buildings and helps the designer's evaluation and decision-making on the HVAC systems in the early stages of building design. Simulation results show that the energy-saving potentials of the VRF system are expected to achieve 22.2% and 11.7%, compared with the VAV system and the FPFA system, respectively. Energy-usage breakdown for the end-users in various systems is also presented.  相似文献   

11.
This paper analyses office cooling systems based on all air mixing ventilation systems alone or coupled with radiant ceiling panels. This last solution may be effectively applied to retrofit all air systems that are no longer able to maintain a suitable thermal comfort in the indoor environment, for example in offices with high thermal loads.  相似文献   

12.
Radiant ceiling cooling is a comfortable and energy saving air conditioning system, but condensation on the panels limits its application. The moisture distribution of a radiant cooling room is one of the key factors affecting the condensation of radiant panels. This paper uses a simulation model validated by experimental data to investigate the influence of wall-attached jets on the moisture content distribution of a room with radiant cooling. The influence of diffuser types and air velocities on the moisture content distribution is analyzed in the pre-dehumidification stage. This paper also studies the moisture content distribution and dew point temperature variation of the attached air layer with the cooling system operating with and without pre-dehumidification. The results show that a linear diffuser has a better attach effect, and the moisture content distribution is more uniform. The time it takes to reduce the moisture content to the design value of different diffusers is similar, approximately 25 min. With increasing air velocity and decreasing linear diffuser length, the non-uniformity coefficient (NUC) of the moisture content distribution increases and the pre-dehumidification time becomes longer. When the radiant cooling system operates without pre-dehumidification, the attached layer moisture content is high at the beginning, which may cause condensation in the first 7 min. Pre-dehumidification can decrease the moisture content and dew point temperature and effectively prevent condensation.  相似文献   

13.
辐射供冷空调结露问题的研究现状及其对策   总被引:1,自引:0,他引:1  
辐射供冷空调具有良好的热舒适度、改善室内空气品质、节能等优点。但在热湿地区,由于辐射板表面容易结露,使得它在市场上的应用受到极大限制。本文通过对辐射供冷空调系统结露问题研究现状的总结,提出了一种"疏导结露"的辐射板模型,为辐射供冷空调系统结露问题的研究提供了新思路。  相似文献   

14.
Radiant heating and cooling systems have significant energy-saving potential and are gaining popularity in commercial buildings. The main aim of the experimental study reported here was to characterize the behavior of radiant cooling systems in a typical office environment,including the effect of ceiling fans on stratification,the variation in comfort conditions from perimeter to core,control on operative temperature vs. air temperature and the effect of carpet on cooling capacity. The goal was to limit both the first cost and the perceived risk associated with such systems. Two types of radiant systems,the radiant ceiling panel( RCP) system and the radiant slab( RS) system,were investigated. The experiments were carried out in one of the test cells that constitute the FLEXLAB test facility at the Law rence Berkeley National Laboratory in March and April 2016. In total,tentest cases( five for RCP and five for RS) were performed,covering a range of operational conditions. In cooling mode,the air temperature stratification is relatively small in the RCP,with a maximum value of 1. 6 K. The observed stratification effect was significantly greater in the RS,tw ice as much as that in the RCP.The maximum increase in dry bulb temperature in the perimeter zone due to solar radiation was 1. 2 K for RCP and 0. 9 K for RS-too small to have a significant impact on thermal comfort. The use of ceiling fans was able to reduce any excess stratification and provide better indoor comfort,if required. The use of thin carpet requires a 1 K low er supply chilled water temperature to compensate for the added thermal resistance,somew hat reducing the opportunities for water-side free cooling and increasing the risk of condensation. In both systems,the difference betw een the room operative temperature and the room air temperature is small when the cooling loads are met by the radiant systems. This makes it possible to use the air temperature to control the radiant systems in lieu of the operative temperature,reducing both first cost and maintenance costs.  相似文献   

15.
运用Fluent对一个顶板辐射供冷房间进行模拟.模拟发现随着辐射板温度的降低,辐射板换热量和外墙传热量大幅提高,而人体换热量却变化不大.可分析得出辐射制冷系统的节能性是有条件的.  相似文献   

16.
Polyvinylchloride (PVC) panel is one of the most favorite decorative materials that has been popularly applied as finishing of ceiling in residential buildings. It is about five years that the people incline to redecorate the ceiling of old buildings with PVC panel in big cities of Iran, such as Mashad. In this study, the influence of ceiling PVC panel on the cooling and heating loads of studied apartment were determined by software DeST-h. In addition, the summer natural ventilation of the mentioned apartment is investigated by determining the wind speed into the apartment through the computational fluid dynamics (CFD) software. The evaluation of environment indoor wind velocity showed that most of the apartment space is a comfortable zone. The results of studied building analyses demonstrated that using PVC panel on the ceiling can decline the energy consumption of the penthouse (fifth level) of the investigated building, which is about 3.7% and 7% for studied methods of without and with air layer, respectively. In addition, although the existence of air layer can decline the cooling and heating loads, the increase in air layer thickness did not show significant decrease on building energy consumption. However, the PVC panel is expensive and is not suitable to be used for ceiling thermal insulation, but adding a thin layer of air between ceiling and PVC panel can be a good step toward sustainable building, when the people are inclined to utilize it as a decorative ceiling.  相似文献   

17.
The performance of the chilled ceiling (CC) displacement ventilation (DV) systems is constrained by latent load removal capacity and cost of supply air dehumidification to prevent condensation on the ceiling. In this study, a liquid desiccant dehumidification membrane cycle (LDMC) is mathematically modelled to replace the CC and remove directly latent and sensible load from indoor space through the membrane. The desiccant system is coupled with the DV system. An optimized operational strategy is adopted while allowing ceiling temperature to drop to lower values than conventional CC/DV. The optimized LDMC-C/DV system was implemented in an office space in Beirut climate. It was found that decreasing the membrane liquid desiccant temperature resulted in a significant decrease in the total cooling energy of the system, while increasing the solar heating energy of the desiccant regeneration. At optimal set points, a decrease of 49% in energy consumption was observed compared to the conventional CC/DV system.  相似文献   

18.
The objective of this study is to determine the potential energy savings and thermal comfort benefits of exposing concrete in the ceiling to the indoor air as an alternative to suspended ceiling. The performances were assessed through monitoring of room air and surface temperatures in an office building in operation, and simulation of different scenarios with a calibrated building simulation model. In this study, it is shown that ESP-r is capable of simulating an advanced controlled office building in operation with good agreement with the measurements. The results presented in this paper indicate that exposed concrete in the ceiling both reduces the number of hours with excessive temperatures considerably and create a better and more stable thermal environment during the working day. Also, exposed concrete increases the achievements of utilizing night free cooling significantly. However, by removing the suspended ceiling, only minor annual heating energy savings are achieved.  相似文献   

19.
辐射顶板供冷以其节能、良好的热舒适度、无吹风感、改善室内空气品质、降低峰值能耗、节省建筑空间等优点,已经被越来越多地选作空调末端。辐射顶板供冷市场需求不断增大同时对辐射顶板制冷量的测试提出了更高的要求。本文对两种顶板辐射供冷性能实验测试方法(DIN EN 14240标准和ANSI/ASHRAE 138标准)和两种辐射顶板制冷量的计算方法(ASHRAE手册和BS EN 1264标准)做了介绍,并对辐射板供冷量的两种实验测试方法和两种计算方法分别做了比较;在按EN 14240标准搭建的实验台中对金属辐射顶板进行了测试,将辐射板单位面积供冷量两种计算值与实验测试值进行了比较并分析了误差原因。  相似文献   

20.
胡剑平  饶政华  廖胜明 《建筑节能》2012,40(6):33-37,53
以长沙地区典型办公建筑为对象,耦合建筑负荷计算,建立了光伏遮阳板的传热和发电模型,模拟了全年建筑能耗和系统产电量.分析了光伏遮阳板在建筑不同朝向以不同倾角和宽度安装时,系统的遮阳和产电的综合节能效果.研究结果表明:光伏遮阳极倾角从0°~40°变化时建筑节能量增加幅度较大,而倾角大于40°时变幅趋缓;系统东、西向安装时的单位面积光伏板的建筑节能效果优于南向安装,倾角小于45°时南向安装的系统产电量最大.研究结果为光伏遮阳板与建筑一体化技术的优化和推广应用提供了有益的参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号