首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper presents application of fuzzy logic controlled superconducting magnetic energy storage device, SMES to damp the frequency oscillations of interconnected two-area power systems due to load excursions. The system frequency oscillations appear due to load disturbance. To stabilize the system frequency oscillations, the active power can be controlled via superconducting magnetic energy storage device, SMES. The error in the area control and its rate of change is used as controller input signals to the proposed fuzzy logic controller. In order to judge the effect of the proposed fuzzy logic controlled SMES, a comparative study is made between its effect and the effect of the conventional proportional plus integral (PI) controlled SMES. The studied system consists of two-area (thermal–thermal) power system each one equipped with SMES unit. The time simulation results indicate the superiority of the proposed fuzzy logic controlled SMES over the conventional PI SMES in damping the system oscillations and reach quickly to zero frequency deviation. The system is modeled and solved by using MATLAB software.  相似文献   

2.
With high penetration of renewable energy sources (RESs) in modern power systems, system frequency becomes more prone to fluctuation as RESs do not naturally have inertial properties. A conventional energy storage system (ESS) based on a battery has been used to tackle the shortage in system inertia but has low and short-term power support during the disturbance. To address the issues, this paper proposes a new synthetic inertia control (SIC) design with a superconducting magnetic energy storage (SMES) system to mimic the necessary inertia power and damping properties in a short time and thereby regulate the microgrid (µG) frequency during disturbances. In addition, system frequency deviation is reduced by employing the proportional-integral (PI) controller with the proposed SIC system. The efficacy of the proposed SIC system is validated by comparison with the conventional ESS and SMES systems without using the PI controller, under various load/renewable perturbations, nonlinearities, and uncertainties. The simulation results highlight that the proposed system with SMES can efficiently manage several disturbances and high system uncertainty compared to the conventional ESS and SMES systems, without using the PI controller.  相似文献   

3.
孙冉  闵勇 《现代电力》2005,22(2):7-11
提出了一种新的应用超导储能(SMES)装置阻尼电力系统次同步谐振(SSR)的方法。与以往的类似研究相比,由于本方法基于复转矩系数法, 因而不仅可以适应多机复杂电力系统, 还可以得到电气阻尼系数随扰动频率的变化曲线。在引入SMES控制装置后的IEEE第一基准模型中, 根据复转矩系数法的基本原理, 得出了发电机机械复转矩系数和考虑SMES装置时的电气复转矩系数的表达式, 给出了二者之间的定量关系式, 以此为基础研究了应用超导储能装置阻尼次同步谐振的控制策略, 设计了相应的比例积分(PI)控制器,给出了控制框图, 并在IEEE第一基准模型的系统结构和参数条件下得到了控制器参数。在PSCAD /EMTDC环境中将控制策略和超导磁储能装置应用于IEEE第一基准模型进行了动态仿真, 仿真结果验证了该控制方案的有效性和正确性。  相似文献   

4.
In this paper, a heuristic‐based design of robust superconducting magnetic energy storage (SMES) controller is proposed taking system uncertainties into consideration. The SMES model with active and reactive power controllers is used. In addition, the effect of SMES coil current is also included in the model. The power system and the SMES unit with the designed controller are formulated as an optimization problem. The proposed objective function considers both the damping performance index and the robust stability index. In particular, the robust SMES controller is designed to enhance the system damping performance and robustness against system uncertainties such as various load and system parameter changes. The robust stability margin is guaranteed in terms of the multiplicative stability margin (MSM). In the proposed method, the robust SMES active and reactive power controllers are designed systematically by using hybrid tabu search and evolutionary programming, so that the desired damping performance and the best obtainable MSM are acquired. Finally, the designed SMES controller is examined under different situations to evaluate and confirm the effectiveness and robustness via eigenvalue analysis and nonlinear simulations. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

5.
基于超导储能的暂态稳定控制器设计   总被引:9,自引:2,他引:7  
设计了用于提高电力系统的暂态稳定超导储能(SMES)装置的非线性鲁棒控制器,并从数字仿真和动模实验两方面进行了验证。为了简化动态性能分析和控制器设计,在实验样机的基础上,提出了新的基于电流型变流器的SMES的动态模型,并将其转化为标幺制模型。通过外部干扰的引入,得到了装设SMES的单机无穷大系统的动态模型,并采用精确线性化方法和线性H∞控制理论设计了SMES的非线性鲁棒控制器。为了验证该控制器的效果,对装设SMES单机无穷大系统进行了数字仿真和动模实验,并将其与常规PI控制器进行了比较。仿真和实验结果都证明了非线性鲁棒控制器具有良好性能。  相似文献   

6.
建立含超导磁储能装置(SMES)的单机无穷大系统的Phillips-Heffron模型,导出含SMES电力系统总的电磁转矩表达式,从理论上分析SMES对增强系统阻尼的作用.并设计了SMES非线性比例积分微分控制器,数字仿真结果验证了SMES阻尼系统功率振荡的特性,同时表明该控制器具有较好的鲁棒性.  相似文献   

7.
A simple and novel control strategy for damping electromechanical oscillations through control of power converter firing angles α 1 and α2 of a superconducting magnetic energy storage (SMES) unit is proposed. Both active and reactive power modulations are used under unequal α-mode of operation. The choice of unequal mode is discussed in detail. The gains of the proposed SMES controller are determined once offline depending on the power system and the rating of the SMES unit. Simulation results show that the SMES unit can effectively suppress power system oscillations by utilizing its active and reactive power modulation capabilities. The control algorithm is simple and its realization will require very little hardware  相似文献   

8.
The unified power flow controller (UPFC) integrates properties of both shunt and series compensations, and can effectively alter power system parameters in such a way that increases power transfer capability and enhances system stability. In practice, simple proportional–integral (PI) controllers are used to control the UPFC. However, the PI control parameters are usually tuned based on classical or trial-and-error approaches and as such, they are incapable of obtaining good dynamic performance for a wide range of operating conditions and various loads in power systems. Hence, in this article robust control approaches are proposed based on the quantitative feedback theory (QFT), H loop-shaping and μ-synthesis, to design UPFC controllers (power-flow and DC-voltage regulator). The three mentioned methods are compared with each other and a supplementary damping controller is developed to improve damping power system oscillations. Here, a single-machine infinite-bus (SMIB) power system, installed with a UPFC (with system parametric uncertainties) is considered as a case study. The system parametric uncertainties are obtained following 40% simultaneous alterations in parameters and load from their typical values. The simulation results indicate satisfactory verifications of the robust control methods in dealing with the uncertainties considered. When the above three methods and the PI controller are compared in performance in several time-domain simulation tests, the results show clear superiority of the three methods over the PI controller, with the QFT presenting the best performance amongst the three robust control.  相似文献   

9.
Abstract

In order to mitigate most power quality issues in renewable power penetrated systems, load frequency control in automatic generation control based power systems and transient stability concerns in any power system, the deviation in frequency at the point of common coupling is chosen as the driving input for SMES active power control (Δf-control). We report a rate of change of frequency (ROCOF) controlled SMES as a resilient damping device to counter exogenous uncertainties in a wind based multi machine system. Primarily, the ROCOF is contingent on the active power mismatch. SMES reference active power command is issued using a genetic algorithm tuned scheme, participating through ROCOF measurement. The non linear action of SMES is realized by controlling the converter firing angles by a smooth four-zone operation, thus determining the voltage applied across the superconducting inductor. While preserving the dynamics of the DC link and supervising the state of charge (SoC) of the inductor, the effectiveness of the aforementioned control strategy is authenticated by performing non-linear simulations in MATLAB/Simulink. In addition, the dominant modes are also tracked and it is found that the percentage increase in aggregate damping ratio is around 133% using the proposed ROCOF-SMES control.  相似文献   

10.
StatCom-SMES     
This article presents the modeling and control of the integration of a StatCom (static-synchronous compensator) with SMES (superconducting magnetic energy storage system) and its dynamic response to system oscillations caused by a three-phase fault. It has been shown that the StatCom-SMES combination can be very effective in damping power system oscillations. Adding energy storage enhances the performance of a StatCom and possibly reduces the MVA ratings requirements of the StatCom operating alone. This is important for a cost/benefit analysis of installing flexible AC transmission system controllers on utility systems. It should be noted that, in this study, the StatCom provides a real power flow path for SMES, but the SMES controller is independent of the StatCom controller. While the StatCom is ordered to absorb or inject reactive power, the SMES is ordered to absorb/inject real power. It was also observed that the location where the combined compensator is connected is important for improvement of overall system dynamic performance. Although the use of a reactive power controller seems more effective in a load area, this simulation study shows that a StatCom with real power capability can damp the power system oscillations more effectively, thereby stabilizing the system faster-if the StatCom-SMES controller is located near a generation area rather than a load area.  相似文献   

11.
In this paper, a new application of superconducting magnetic energy storage (SMES) for diagnosis of power systems is proposed. Basic experiments for measurement of damping coefficient of power systems by use of SMES are carried out in an experimental system with a small generator, artificial transmission lines, and a small SMES. The SMES produces small power disturbances in the power system without affecting its operating conditions. The small power oscillations in the power system due to continuous power disturbances generated by SMES are observed. The relations among the damping coefficient, the power disturbances, and the power change of SMES are discussed for a one-machine infinite-bus system. The damping coefficients of the power system are obtained by investigating the oscillations due to the sinusoidal power changes of the SMES. The possibility of estimation of the steady-state power system stability by monitoring the damping coefficients of an operating power system by the use of SMES can be shown experimentally. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 119(3): 40–48, 1997  相似文献   

12.
It is well known that the communication delay due to the phasor measurement in wide area monitoring system (WAMS) as well as various system operating conditions such as heavy line flows and unpredictable network structures, may deteriorate the wide-area stabilizing control effect. To overcome this problem, the inverse input and output multiplicative model is proposed to represent unstructured uncertainties due to system operations and communication delay in the robust centralized damping controller design of superconducting magnetic energy storage (SMES) based on WAMS. The structure of centralized controller for SMES is the practical 1st-order lead/lag compensator. To automatically tune the control parameters, the optimization problem based on the enhancement of damping performance and system robust stability margin is achieved by particle swarm optimization. Simulation studies in the West Japan six-area interconnected system confirm that the proposed robust SMES centralized controller is superior to the conventional SMES centralized controller in terms of damping performance and robustness against system and time delay uncertainties.  相似文献   

13.
Bat inspired algorithm (BIA) has recently been explored to develop a novel algorithm for distributed optimization and control. In this paper, BIA-based design of model predictive controllers (MPCs) is proposed for load frequency control (LFC) to enhance the damping of oscillations in power systems. The proposed model predictive load frequency controllers are termed as MPLFCs. Two-area hydro-thermal system, equipped with MPLFCs, is considered to accomplish this study. The suggested power system model considers generation rate constraint (GRC) and governor dead band (GDB). Time delays imposed to the power system by governor-turbine, thermodynamic process, and communication channels are accounted for as well. BIA is utilized to search for optimal controller parameters by minimizing a candidate time-domain based objective function. The performance of the proposed controller has been compared to those of the conventional PI controller based on integral square error (ISE) technique and the PI controller optimized by genetic algorithms (GA), in order to demonstrate the superior efficiency of the BIA-based MPLFCs. Simulation results emphasis on the better performance of the proposed MPLFCs compared to conventional and GA-based PI controllers over a wide range of operating conditions and system parameters uncertainties.  相似文献   

14.
以含超导磁储能SMES(SuperconductingMagneticEnergyStorage)装置的单机无穷大电力系统为研究对象,建立了其非线性数学模型。在此模型基础上,提出了一种基于反馈线性化方法和线性最优控制理论的SMES控制规律的简便设计方法。一个重要的特点是:在所构成的线性系统中,通过坐标变换引入了发电机机端电压,因此,可以方便地实现使用SMES同时对系统的功角和电压稳定进行控制。仿真结果表明该控制器对改善系统的阻尼特性和提高系统的电压稳定性都具有良好的控制效果,同时也验证了该控制器的可行性。  相似文献   

15.
This paper proposes a robust power controller design of superconducting magnetic energy storage (SMES) based on wide area synchronized phasor measurement units (PMUs) for stabilization of inter-area oscillation. The structure of active and reactive power controllers of SMES is the first-order lead/lag compensator. Assuming multiple PMUs are located in an interconnected power system, the steady state phasor data are obtained by applying the small load perturbation. Using the phasor data, the simplified oscillation model (SOM) included with SMES power controllers can be identified and applied to estimate the dominant inter-area oscillation modes. In the robust control design, unstructured system uncertainties such as various operating conditions, system parameters variation, etc., are represented by the inverse additive perturbation and included in the SOM. To enhance the system robust stability margin, the optimization of SMES control parameters is solved by genetic algorithm in the SOM. Simulation studies in the West Japan 6-machine power system confirm that the robustness of the proposed SMES is much superior to the conventional SMES against various operating conditions and fault locations.  相似文献   

16.
非线性PID控制器在超导磁储能装置中的应用研究   总被引:17,自引:5,他引:12  
非线性比例-积分-微分(Nonlinear Proportion-Integral-Differential,NLPID)控制是一种利用非线性跟踪-微分器和非线性组合方法对线性PID控制进行改进的新型控制策略,它具有不依赖于被控系统模型的特点.作者设计了用于电力系统超导磁储能(Superconducting Magnetic Energy Storage,SMES)装置的NLPID控制器,该控制器通过对由跟踪-微分器提取的转子角速度和机端电压的偏差及其微分和积分信号分别进行适当非线性组合,产生用于协调控制SMES和系统之间的有功和无功功率交换的控制信号.仿真结果表明该NLPID控制器具有较好的适应性和鲁棒性,且改善了系统的阻尼特性,提高了系统电压的稳定性.  相似文献   

17.
This paper presents the design of a coordinated superconducting magnetic energy storage (SMES) and blade pitch controller (BPC) to stabilize the frequency in a smart‐grid power system. To compensate for such power variations, a SMES that is able to supply and absorb active power quickly can be applied to control the frequency fluctuation. The structure of the controller is that of a first‐order lead–lag compensator. The robustness of the controller is guaranteed by applying an inverse additive perturbation to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions, etc. Genetic algorithm (GA) is applied to solve and achieve the control parameters. Simulation studies have been done to show the control effect and robustness of the proposed SMES and blade pitch in comparison with SMES & Pitch against various disturbances. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

18.
基于遗传算法的超导磁储能装置H2/H∞鲁棒控制器设计   总被引:7,自引:0,他引:7  
提出了应用GA(遗传算法)设计H2/H∞鲁棒控制器的一般方法,使得在满足闭环系统的H∞范数小于指定的工程要求的条件下误差信号的H2范数最小,该问题可归结为一个带约束条件的极小值优化问题,并通过一种改进的遗传算法加以解决,该设计方法能对具有任意控制器结构的控制系统进行参数优化,与传统的鲁棒控制器设计方法相比,所提出的方法不仅可以提高控制器的鲁棒性,还具有易于进行参数优化的优点,将所提出的方法应用于超导磁储能装置(SMES)PI型鲁棒控制器的设计,时域仿真结果表明所设计的控制器具有很好的鲁棒性,在不同的运用工况下均能有效阻尼电力系统的振荡,此外,控制器还具有结构简单,易于工程实现的优点。  相似文献   

19.
An Energy Storage System (ESS) installed in a power system can effectively damp power system oscillations through controlling exchange of either active or reactive power between the ESS and power system. This paper investigates the robustness of damping control implemented by the ESS to the variations of power system operating conditions. It proposes a new analytical method based on the well-known equal-area criterion and small-signal stability analysis. By using the proposed method, it is concluded in the paper that damping control implemented by the ESS through controlling its active power exchange with the power system is robust to the changes of power system operating conditions. While if the ESS damping control is realized by controlling its reactive power exchange with the power system, effectiveness of damping control changes with variations of power system operating condition. In the paper, an example of power system installed with a battery ESS (BESS) is presented. Simulation results confirm the analytical conclusions made in the paper about the robustness of ESS damping control. Laboratory experiment of a physical power system installed with a 35 kJ/7 kW Superconducting Magnetic Energy Storage (SMES) was carried out to evaluate theoretical study. Results are given in the paper, which demonstrate that effectiveness of SMES damping control realized through regulating active power is robust to changes of load conditions of the physical power system.  相似文献   

20.
The purpose of large-scale power system interconnection is to achieve extremely economical and reliable power generation and transmission. It has established the present power systems of high quality. On the other hand, in the large power systems with complex configuration, an undamped power swing with low frequency caused by the synchronous power between interconnected systems tends to occur as well as an undamped power swing caused by the synchronous power of specific generators. Several coordinated stabilizing control schemes for the power systems by sets of power system stabilizers (PSSs) have been investigated so far. PSS is very effective for the stabilization of power swing among a few specific generators because the function of PSS is achieved by the voltage control using the generator field winding circuit. However, it seems that PSSs do not have sufficient ability to stabilize the power swings between interconnected systems. In this paper, the superconducting magnetic energy storage (SMES) which is significantly effective for the power swings between interconnected systems is introduced and a coordinated power system stabilizing control by SMES and PSSs is proposed. The advantages of the proposed control scheme are: 1) high efficiency of the controller by the distribution of functions; 2) independency of the control design for PSS and SMES; and 3) robustness of the controller, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号