首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barium titanate based positive temperature coefficient (PTC) thermistors, especially high power switching devices, can suffer major mechanical damage if inhomogeneous heating occurs under an applied electrical voltage. The main mode of mechanical failure, known as delamination fracture, manifests itself by cracking of the ceramic disc along a plane approximately parallel to the electrodes. This damage results from the build-up of thermal stresses, the amplitude of which is governed by a large number of geometrical, electrical and thermo-elastic parameters. For an experimental investigation, a measurement device was set up to observe the electrical behaviour of PTC-components during the switching process. To interpret specific aspects of the observations, a mathematical model was developed to simulate the electrical, thermal and thermo-elastic behaviour. In addition to the resistance/temperature characteristics considered by other authors, the varistor-effect (i.e. the non-linear isothermal current-voltage behaviour which is thought to make a significant contribution to the development of the mechanical stresses inparticular) is also taken into account. By doing a non-linear analysis with one and two dimensional models, and taking all relevant temperature dependencies of the material properties into account, a qualitative and quantitative agreement with the experimentally determined electro-thermal and failure statistical behaviour could be achieved. It is shown that in addition to the resistance/temperature characteristics, it is very important to account for the varistor-effect when modelling the build-up of the mechanical stresses during the switching process.  相似文献   

2.
The Weibull statistical theory of fracture was applied to thermal shock of ceramics in the water quench test. Transient thermal stresses and probability of failure were calculated for a cylindrical specimen cooled by convection. The convective heat transfer coefficient was calibrated using the time to failure which was measured with an acoustic emission technique. Theoretical failure probability distributions as a function of time and quench temperature compare favorably with experimental results for three high-alumina ceramics and a glass.  相似文献   

3.
The contradictory properties required of castable refractories makes selecting castable refractories for industrial applications challenging. This paper seeks to describe the material selection for a blast furnace blowpipe application that is subjected to sudden temperature changes and must prevent heat loss. Three commercial high alumina castables containing andalusite or mullite from different manufacturers were characterized. Thermal shock damage resistance was evaluated using thermal shock damage resistance theory and experiments. The castables’ coefficient of thermal expansion was estimated using quantitative X-ray diffraction. Crack propagation resistance was measured using the work-of-fracture technique. Thermal shock damage was experimentally evaluated by measuring the modulus of elasticity and rupture prior to and after thermal cycles. Ultimately, the microstructure of the castables was related to the thermal shock damage behavior by estimating the aggregate size and the fracture toughening mechanisms using light optical and scanning electron microscopes. Heat loss was evaluated by calculating the blowpipe shell temperature using a one-dimensional steady-state heat conduction model. The best commercial castable refractory for blowpipe showed high thermal shock damage resistance and low thermal conductivity. The results in this study agreed with thermal shock damage resistance parameters and showed a correlation between coarse microstructure with large aggregate and higher thermal shock damage resistance.  相似文献   

4.
In order to improve the elevated strength and thermal shock resistance of TiC materials, 20vol% short carbon fiber-reinforced TiC composite (Cf/TiC) was produced by hot pressing. With carbon fiber addition, the strength and fracture toughness of TiC is increased remarkably, and the elastic modulus and thermal expansion coefficient are decreased. The strength value of Cf/TiC composite is 593 MPa at room temperature and 439 MPa at 1400°C, and the fracture toughness value at room temperature is 6.87 MPa m1/2. The thermal stress fracture resistance parameter, R, thermal stress damage resistance parameter, RIV, and thermal stress crack stability parameter, Rst, are all increased. The residual strength decreases significantly when the thermal shock temperature difference, ΔT, is higher than 900°C, and the residual strength is 252 MPa when ΔT is 1400°C. Carbon fiber reinforced-TiC composite exhibits superior resistance to thermal shock damage compared with monolithic TiC. The catastrophic failure induced by severe thermal stresses can be prevented in Cf/TiC composite.  相似文献   

5.
A study was made of the resistance to thermal fracture of four ceramic coatings of the cobalt-bearing ground-coat type applied to enameling-grade iron specimens. The study was made of coated-metal systems in the unsteady state, symmetrically cooled, and in the absence of viscous or plastic flow. Determinations were made of the elastic characteristics of the coating-metal composites, the effective coefficient of linear expansion, the temperature at which the coating and base metal were at dimensional equilibrium, and the temperature differential sufficient to induce coating fracture when water quenched. Coating-metal thickness ratios were correlated with the maximum specimen temperature withstood in water quenching without coating fracture. Studies indicated that ceramic coatings, after receiving a given thermal treatment, fracture when subjected to a thermal shock by a critical temperature differential. When no residual coating stress is present, thermal shock resistance is inversely related to the thermal expansion characteristics of the coating. The critical stress at which coating fracture occurs may be expressed as the sum of thermal and residual stresses developed in annealed systems in which viscous or plastic flow does not occur. Residual compressive stress in a coating is a major factor in improved thermal shock resistance. Increased thermal shock resistance is gained by decreased coating thickness.  相似文献   

6.
Using an ordinary ceramic processing technique, a new method of preparing porous BaTiO3, PTC thermistors is introduced. Adding proper graphite powders into calcined BaTiO3, powder can increase porosity and enhance the PTC effect of the sintered sample. When the graphite addition is about 1.0 wt%, the resisivity of samples from low-purity raw materials decreases to 20 Σ·cm at room temperature, while the PTC resistivity ratio is over 105 and 1–2 orders higher than that of samples without the porosifier. The porosifier has increased the reproducibility of resistivity from 60% up to 90%. In addition, the porous thermistor has a fast response to overcurrent and shows some improvement in heat resistance. With the aid of the Heywang model and the Kuwabara conclusion, the influence of graphite on grain surfaces is discussed. The experimental results show that this method is a useful technique to prepare good PTC thermistors from low-purity raw materials.  相似文献   

7.
Viscoelastic bridges can be formed in refractory ceramics while cooling from high temperatures. Such bridges can shield crack tips, thus reducing the effective crack tip stress intensity factors leading to higher resistance to creep and thermal shock. The extent to which the crack tip stress intensity is reduced can be estimated from fracture mechanics models that include experimental measurement of crack bridging and microstructural parameters. In this paper a novel approach is proposed for the assessment of the effective crack bridging toughening from combining destructive and non-destructive test methods. Fracture toughness values were determined applying chevron notched specimen technique and surface damage of the specimen was monitored by image analysis. Different cordierite–mullite compositions characterized by different microstructure morphologies and crack propagation behaviour were investigated. A brief discussion about the correlation between thermo-mechanical properties, microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, an empirical model able to determine the presence and effectiveness of the viscoelastic crack bridging ligaments acting in the microstructure under thermal shock conditions and their degradation with increasing thermal shock cycles from parameters measured at room temperature is presented.  相似文献   

8.
Ceramic matrix composites (CMCs) are commonly used for high temperature components in aircrafts. However, thermal shock, as a typical loading case, will cause high thermal stresses in CMCs resulting in brittle fracture failure, and material cracking caused by thermal shock can further reduce the effectiveness of thermal protection function. In the present paper, we propose a bionic hierarchical fiber preform design method to improve the thermal shock resistance of ceramics. The effect of architectures of fiber preforms of continuous carbon fiber-reinforced CMCs on the thermal shock resistance was investigated to understand its importance and the related mechanical mechanisms. Thermal shock (cycling) tests were performed with continuous carbon fibers reinforced SiCN ceramic matrix composites (Cf/SiCN) prepared by PIP. 3D micro-CT scan and three-point bending tests were also conducted to evaluated the resultant damage. The results showed that smaller internal damage and higher thermal shock resistance can be obtained in comparison to pure SiCN ceramics, and the underlying mechanism can be explained by the fact that smaller pitch angle can resist the through-thickness crack propagation via promoting diffused in-plane damage. The present study offers a possibility in developing biomimetic Cf/SiCN ceramics with excellent thermal shock behavior.  相似文献   

9.
The thermal shock resistance (indentation–quench method), fracture toughness, and thermal conductivity of three alumina–silicon–carbide–whisker composites and alumina have been investigated. A new procedure for the evaluation of thermal conductivity data is suggested, and higher room-temperature thermal conductivity than that reported in the literature is determined for silicon carbide whiskers. The ranking of the materials according to thermal shock resistance is consistent with the ranking according to fracture toughness but disagrees with the ranking according to thermal conductivity. This finding supports the analytically obtained result that, in defining thermal shock resistance, fracture toughness is more important than thermal conductivity.  相似文献   

10.
This paper develops a novel multi-scale thermal/mechanical analysis model which not only can efficiently measure the thermal shock response but also highly reflects the effects of diversiform micro-structures of porous ceramics. Knowledge of the temperature distribution and time-varied thermal stress intensity factors (SIF) is derived by finite element/finite difference method and the weight function method in the macro continuum model. The finite element analysis employs a micro-mechanical model in conjunction with the macro model for the purpose of relating the SIF to the thermal stress in the struts of the porous ceramics. The micro model around the crack tip was established by using Voronoi lattices to accurately explore the micro-architectural features of porous ceramics. Hot shock induced center crack and cold shock induced edge crack are both considered. Effects of relative density and pore size on the thermal shock resistance are investigated and the results are well coincident with the experimental tests. The influence of cell regularity and cross section shape of the cell struts is discussed and the corresponding explanations are provided. The importance of incorporating temperature-dependent material properties on the thermal shock resistance prediction is quantitatively represented. These multi-faceted models and results provide a significant guide to the design and selection of porous ceramics against the thermal shock fracture failure for the future thermal protection system of space shuttle.  相似文献   

11.
《应用陶瓷进展》2013,112(3):142-148
Abstract

The characterisation of thermal shock damage in cordierite–mullite refractory plates used as substrates in fast firing of porcelain whiteware has been investigated. Two different refractory compositions (termed REFO and CONC), characterised by different silica to alumina ratios, were studied. Thermal shock damage was induced in as received samples by water quenching tests from 1250°C. Thermal and mechanical properties were measured at room temperature by means of standard techniques and then the thermal shock resistance parameter R was calculated. The fracture toughness of selected samples was measured before and after thermal shock by the chevron notched specimen technique. The reliability of this technique for evaluation of small differences in fracture toughness after a given number of thermal shock cycles was investigated. The suitability of K Ic measurements by the chevron notched specimen technique to characterise the development of thermal shock damage in refractory materials was proved in this investigation.  相似文献   

12.
Thermal Cyclic Fatigue Behavior of Porous Ceramics for Gas Cleaning   总被引:1,自引:0,他引:1  
The thermal shock fatigue resistance of cordierite and SiC filters with a mullite filtration layer was evaluated under simulated reverse cleaning conditions. O-ring specimens were thermally shocked by cyclically blowing cold air outward through them while they were exposed to high-temperature flue gas. The calculated values of the tangential tensile stresses induced by the temperature differences between the inner and outer surfaces were found to be largest at the inner surfaces. It was also found that the elastic modulus and the thermal expansion coefficient of the filters affect the magnitude of the thermal stresses more than the thermal diffusivity and thermal transfer area, which were directly related to the microstructure of the filters. Failure of both filters is believed to have initiated at the inner subsurfaces because of the effects of thermal shock. The thermal shock fatigue lifetimes increased as thermal stresses decreased. The fatigue parameters for the SiC and cordierite filters were found to be 41 and 22, respectively. These parameters probably vary over different operating temperature ranges, especially in the case of SiC filters, where changes in their composite microstructures affect their high-temperature strength.  相似文献   

13.
The thermal stability of ceramic materials is considered from the standpoint of fracture mechanics as a property determined by the capacity of the structure to resist the appearance and propagation of cracks on critical defects under the effect of thermal stresses. A method is suggested for comparative evaluation of the thermal stability of ceramics according to which specimens with a notch simulating a structural defect responsible for fracture are subjected to thermal shock. The absence of induced defects in the region adjoining the tip of the notch is a necessary condition for providing reproducible results. The resistance to thermal shock is determined from the relative decrease in the crack resistance after the thermal shock, the “insensitivity” of the structure to defects, and the degree of their accumulation in the region of the tip of the notch as a result of the thermal shock. The first and second criteria for evaluation of thermal stability involve the coefficient of relaxation of thermal stresses and the ultimate bending strength of the notched specimen. A ceramics of ZrO2 partially stabilized by 3 and 12% Y2O3 and a cermet with a composition of ZrO2-3 vol.% Y2O3-50 vol.% Cr are chosen for studying thermal stability by the method developed. Calculated results on the thermal stability of the cermet are compared with results obtained directly by thermocycling with variation of the metal content from 10 to 50%. The maximum mechanical properties are shown to correspond to a metal content of 40% due to formation of double-skeleton structure in the cermet. The method can be helpful for evaluating the initial stage of fracture caused by a thermal shock in structural ceramics. Translated from Ogneupory i Tekhnicheskaya Keramika, No. 3, pp. 5–10, March, 1998.  相似文献   

14.
Thermal shock strengths of a plate of a functionally graded material (FGM) are analyzed when the plate is suddenly exposed to an environmental medium of different temperature. A finite element/mode superposition method is proposed to solve the time-dependent temperature field. The admissible temperature jump that the material can sustain is studied using the stress-based and fracture mechanics-based criteria. The critical parameters governing the level of the transient thermal stress in the medium are identified. The strength of FGMs under transient thermal stresses is analyzed using both maximum local tensile stress and maximum stress intensity factor criteria.  相似文献   

15.
《Ceramics International》2020,46(15):23956-23963
In this study, a three-directional orthogonal aluminosilicate fiber fabric-reinforced mullite composite with excellent properties was prepared by the precursor impregnation and pyrolysis (PIP) method. The influence of the number of PIP cycles on the microstructure and mechanical properties of the composite was studied. The density and mechanical properties of the composite enhanced with increasing number of PIP cycles. After the 6th PIP cycle, the density of the composite increased by only 0.8%, and the flexural strength and fracture toughness of the composite reached 130.1 MPa and 4.91 MPa m1/2, respectively. Moreover, the thermal shock resistance of the composite was investigated by the high-low temperature (from 1300 °C to room temperature) thermal treatment and water quenching method. The strength retention rate of the composite after 10 high-low temperature thermal cycles was 90.1%; the retention rate dropped to 79.5% after 15 thermal cycles. The composite with the critical thermal shock temperature difference 843.9 °C displayed excellent thermal shock resistance.  相似文献   

16.
In this paper, the SiO2 ceramic matrix composites were reinforced by the two-dimensional (2D) braided Al2O3 fibers by sol-gel. To develop the high performance aeroengine with excellent resistance to thermal shock for advanced aerospace application, two different thermal shock temperatures (1100?°C and 1300?°C) and three different thermal shock cycles (10, 20 and 30 cycles) were tested and compared in this paper; besides, the thermal shock resistance of Al2O3/SiO2 composites was investigated in air. Our results suggested that, the flexural strength of the untreated composites was 78.157?MPa, while the residual strength of Al2O3/SiO2 composites under diverse thermal shock cycles and temperatures had accounted for about 95% and 50% of the untreated composites, respectively. Meanwhile, the density and porosity of the composites were gradually increased with the increase in test temperature. Moreover, the changes in fracture morphology and micro-structural evolution of the composites were also observed. Our observations indicated that, the fracture morphology of the composites mainly exhibited ductile fracture at the thermal shock temperature of 1100?°C, whereas brittle fracture at the thermal shock temperature of 1300?°C. Additionally, Al2O3/SiO2 composites belonged to the Oxide/Oxide CMCs, so no new phase was formed after thermal shock tests. Above all, findings of this paper showed that Al2O3/SiO2 composites had displayed outstanding thermal shock resistance.  相似文献   

17.
《Ceramics International》2013,39(6):6189-6197
When refractory castables are submitted to continuous thermal changes, crack nucleation and/or propagation can take place resulting in a loss of mechanical strength and overall degradation of such materials. This work evaluates the thermal shock damage cycling of high-alumina and mullite refractory castables designed for petrochemical application. Hot elastic modulus analyses were carried out after 0, 2, 4, 6, 8 and 10 thermal cycles (ΔT=800 °C) in order to investigate the microcracking evolution due to the temperature changes. Additionally, apparent porosity, hot modulus of rupture, erosion and work of fracture measurements were also performed. According to the attained results, it was detected at which temperature range the stiffening or embrittlement took place in the mullite-based refractory (M-SA) microstructure. Nevertheless, the damage induced by the thermal shock tests was not permanent, as further increase of the elastic modulus results was observed for all evaluated samples after annealing. On the other hand, the alumina-based composition containing a sintering additive (TA-SA) presented enhanced mechanical strength, high thermal stability and E values. Simulations indicated that refractories with high E values (∼140 GPa, such as those attained for alumina-based castable) showed a reduced amount of stored elastic strain energy even under severe thermal stresses, which seems to be a key aspect for the engineered design of thermal shock resistance materials.  相似文献   

18.
《Ceramics International》2016,42(11):12701-12708
The influence of single and repetitive sudden changes of temperature on the mechanical integrity of cemented carbides was investigated as a function of their microstructure. Thermal shock resistance was assessed by testing the residual flexural strength of hardmetal beams after being subjected to thermal shock by water quenching. Results indicate that hard cemented carbides tend to exhibit a superior resistance to the nucleation of thermal shock damage but a lower resistance to the propagation of this damage mechanism than tough grades, and vice versa. These trends are in agreement with those expected from the evaluation of the thermal shock Hasselman’s parameters. The evidenced strength loss after thermal shock may be related to the subcritical growth of intrinsic flaws driven by localized microcracking surrounding them. Results also point out on Ni-base hardmetals to exhibit a slightly higher resistance to abrupt changes of temperature than Co-base ones.  相似文献   

19.
《Ceramics International》2020,46(2):1503-1511
The impact of temperature dependence of material properties on thermal shock resistance of porous ceramic foams is studied in this paper. Two cases of thermal shock are carried out: sudden heating and sudden cooling. Finite difference method and weight function method are employed to get the thermal stress field at crack tip. The effects of time dependence and temperature dependence of material properties on thermal shock behavior are analyzed. The thermal shock resistance is acquired based on two different criteria: fracture mechanics criterion and stress criterion. By comparison analysis, results show that taking temperature dependence of the material properties into account is crucial in the assessment of thermal shock resistance of ceramic foams. Cold shock fracture experiments of Al2O3 foams with different relative densities are also made, and the obtained results are in coincidence with theoretical results very well.  相似文献   

20.
Controlled growth of crystals and immiscible phases in glass coatings on steel increased their resistance to mechanical and thermal shock. The electron microscope was used to follow crystal and immiscible phase development during heat treatment and to study the effect of crystals on fracture propagation in several complex glass compositions applied to metals by standard enameling techniques. Initial firing temperature, heating rates, heat treatment, and other enamel processes were found to affect the nature of the phases developed in the coatings. Crystals and immiscible phases caused fracture paths to be disrupted, resulting in nonconchoidal types of failure. A correlation is made between resistance to thermal shock and fracture properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号