首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

As an alternative fuel that can be used in SI engines, LPG is a clean fuel with larger H/C ratio compared to gasoline, low CO2 emission, and small amount of pollutants such as sulfur compounds. In the Spark-ignition (SI) engine, Direct injection (DI) technology can significantly increase the engine volumetric efficiency and decrease the need for a throttle valve. DI allows engine operation with the stratified charge, which enables a relatively higher combustion efficiency. Stratified charge can be supplied to nearby spark plugs to allow for overall lean combustion, which improves thermal efficiency and can cope with problems regarding emission regulations. In this study, a visualization experiment system that consists of visualization combustion chamber, air supply control system, emission control system, LPG fuel supply system, electronic control system and image data acquisition system was designed and manufactured. For all cases for which ignition was successful, flame propagation image was digitally recorded using ICCD camera, and the recorded flame propagation characteristics were examined. This study, in its results, is expected to make a contribution in terms of important data for the design and optimization of a Spark-ignited direct injection (SIDI) LPG engine.

  相似文献   

2.
In this paper, the radical induced (RI) ignition method was applied into a compressed natural gas (CNG) engine to achieve rapid bulk combustion. The experimental RI-CNG engine was modified from a diesel engine. The combustion chamber of the modified diesel engine was divided into a sub-chamber and a main-chamber. The sub-chamber is physically separated from the main-chamber above the piston and is connected to the main-chamber via several passage holes. CNG is injected into the sub-chamber during the intake stroke and then ignited before the top dead center (TDC) by a spark plug. As the ignition occurs in the sub-chamber, the pressure rises, forcing the gases which contain a number of active radicals out into the main-chamber to ignite the unburned mixture. The purpose of this paper is to study the engine operating limit and the combustion characteristics of the RI-CNG engine. The engine operating limit was accessed with different engine speeds and injection timings. The obtained data including the coefficient of variation (COV), brake specific fuel consumption (BSFC), mass fraction burned and emissions were analyzed.  相似文献   

3.
通过试验手段对比分析了预燃室射流点火模式及火花塞点火模式 (SI)对燃烧性能的影响,结果表明:SI点火模式的发动机受高负荷爆震的限制,仅在中等负荷达到最佳的油耗率和热效率。压缩比(CR)的增加仅在中小负荷对油耗率和热效率有改善效果;相比于SI点火模式,预燃室射流点火模式可实现更快的燃烧速度和火焰传播速度,对SI发动机的爆震有较好的抑制效果,在中等负荷具有更低的油耗率和更高的热效率,但在低负荷及高负荷阶段,油耗率和热效率恶化;采用预燃室射流点火模式,能有效增加缸内燃烧速率,减轻CA50推迟对油耗率恶化的效果,通过提高压缩比实现降低油耗率的潜力和效果更好。  相似文献   

4.
This article reports the experimental and theoretical results for a spark ignition engine working with compressed natural gas as a fuel. The theoretical part of this work uses a zero-dimensional, multi-zone combustion model in order to predict nitric oxide (NO) emission in a spark ignition (SI) engine. The basic concept of the model is the division of the burned gas into several distinct zones for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. During combustion, 12 products are obtained by chemical equilibrium via Gibbs energy minimization method and nitric oxide formation is calculated from chemical kinetic by the extended Zeldovich mechanism. The burning rate required as input to the model is expressed as a Wiebe function, fitted to experimentally derived burn rates. The model is validated against experimental data from a four-cylinder, four-stroke, SI gas engine (EF7) running with CNG fuel. The calculated values for pressure and nitric oxide emissions show good agreement with the experimental data. The superiority of the multizone model over its two-zone counterpart is demonstrated in view of its more realistic in-cylinder NO emissions predictions when compared to the available experimental data.  相似文献   

5.
A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.  相似文献   

6.
In the present investigation a volatile fraction of Pinus resin called Turpentine has been experimented in a direct injection diesel engine under HCCI combustion mode. The engine chosen to experiment is a single cylinder DI diesel engine and modified in such a way to ignite Turpentine in a diesel engine under HCCI mode. As the Turpentine has a higher self ignition temperature the ignition of Turpentine in regular diesel engines with auto-ignition is not possible. Hence, suitable modification is made in the engine to ignite Turpentine in a diesel engine like diesel fuel. The modified engine has ECM controlled fuel spray and an air preheater in the suction side of the engine. The combined effort of adiabatic compression and supply of preheated air ignites turpentine by auto-ignition and its timing of ignition is precisely controlled by changing intake air temperature. This investigation revealed that the engine operated with turpentine performed well with little loss of brake thermal efficiency. And, emitted comparatively lower emissions such as NOx and smoke and proved that the turpentine is a best suited fuel for HCCI operation.  相似文献   

7.
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three- dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.  相似文献   

8.
Premixed diesel engines have the potential to achieve a more homogeneous, leaner mixture near TDC compared to conventional diesel engines. Early studies have shown that the fuel injection timing and injection angle affect the mixture formation in a HCCI (Homogeneous Charge Compression Ignition) engine. Therefore in this study, we investigated the relationship between combustion and mixture formations accordance with injection conditions in a common rail direct injection type HCCI engine using an early injection strategy. From this results, we found that the fuel injection timing and injection angle affect the mixture formation and in turn affect combustion in the HCCI engine. In addition, this study revealed that the injection angle of 100° is effective to reduce smoke emission without any sacrificing power in the early injection case.  相似文献   

9.
A cycle simulation program is developed and its predictions are compared with the test bed measurements of a direct injection (DI) diesel engine. It is based on the mass and energy conservation equations with phenomenological models for diesel combustion. Two modeling approaches for combustion have been tested; a multi-zone model by Hiroyasu et al (1976) and the other one coupled with an in-cylinder flow model. The results of the two combustion models are compared with the measured imep, pressure trace and NOx and soot emissions over a range of the engine loads and speeds. A parametric study is performed for the fuel injection timing and pressure, the swirl ratio, and the squish area. The calculation results agree with the measured data, and with intuitive understanding of the general operating characteristics of a DI diesel engine.  相似文献   

10.
A mathematical model of gaseous fuel solenoid injector for spark ignition engine has been realized and validated through experimental data. The gas injector was studied with particular reference to the complex needle motion during the opening and closing phases, which strongly affects the amount of fuel injected. As is known, in fact, when the injector nozzle is widely open, the mass flow depends only on the fluid pressure and temperature upstream the injector: this allows one to control the injected fuel mass acting on the “injection time” (the period during which the injector solenoid is energized). This makes the correlation between the injected fuel mass and the injection time linear, except for the lower injection times, where we experimentally observed strong nonlinearities. These nonlinearities arise by the injector outflow area variation caused by the needle bounces due to impacts during the opening and closing transients [1] and may seriously compromise the mixture quality control, thus increasing both fuel consumption and pollutant emissions, above all because the S.I. catalytic conversion system has a very low efficiency for non-stoichiometric mixtures. Moreover, in recent works [2, 3] we tested the simultaneous combustion of a gaseous fuel (compressed natural gas, CNG, or liquefied petroleum gas, LPG) and gasoline in a spark ignition engine obtaining great improvement both in engine efficiency and pollutant emissions with respect to pure gasoline operation mode; this third operating mode of bi-fuel engines, called “double fuel” combustion, requires small amounts of gaseous fuel, hence forcing the injectors to work in the non-monotonic zone of the injected mass diagram, where the control on air-fuel ratio is poor. Starting from these considerations we investigated the fuel injector dynamics with the aim to improve its performance in the low injection times range. The first part of this paper deals with the realization of a mathematical model for the prediction of both the needle motion and the injected mass for choked flow condition, while the second part presents the model calibration and validation, performed by means of experimental data obtained on the engine test bed of the internal combustion engine laboratory of the University of Palermo.  相似文献   

11.
Coal-water slurry(CWS) engine tests designed to investigate the ignition and combustion processes of the fuel are described in this paper. The effects of three different parameters, namely, (a) needle lift pressure, (b) fuel injection timing, and (c) percent coal loading in the slurry fuel are studied in detail. Successful operation of the engine using the coal water slurry required modifications to the engine and support systems. The physical trends of combustion under single parametric variations are presented in terms of the cylinder pressure, heat release rates, and cumulative heat release curves. The major conclusions of the work include: (a) higher needle lift pressures led to shorter ignition delay times for the CWS fuel: (b) the ignition delay time of the advanced injection start was little different from that of retarded fuel injection timing due to poor atomization: and (c) dilution of the slurry with water can significantly affect the combustion processes and ease of fuel handling.  相似文献   

12.

In this study, the effects of two piezo injectors operated by different mechanisms on multi-injection and Compression ignition (CI) combustion were investigated. High-pressure injectors for CI engines are divided into two categories according to the actuator: Solenoid and piezo injectors. It is commonly known that both injectors have a hydraulic circuit for fuel injection; thus, the performance of the injector is highly dependent on not only hydraulic characteristics such as volume of internal chambers and nozzle geometry, but also the actuation mechanism. Specially, the direct needle-Driven piezo injector (DPI) is introduced in this study and compared with the indirectacting Piezo injector (PI) to investigate the injection characteristics and influences on CI combustion performance by using spray visualization, injection rate measurement, and single cylinder diesel engine experiments, as well as numerical simulation for injection rate modeling of DPI. In the spray visualization experiment, a high-speed camera was used to examine spray tip penetration length and spray speed with respect to each injector. Also, in order to investigate injection rate information, which is a significantly dominant factor in combustion characteristics, the Bosch-tube method was adapted under the condition of a back pressure of 4.5 MPa, corresponding to engine motoring pressure. Also, a single-cylinder CRDi (Common-rail direct-injection) engine experiment was carried out to determine the effects of different piezo-acting mechanisms on two-stage fuel injection and CI combustion. From the key results obtained by this study, the direct needle-driven piezo injector has a faster SOI (Start of injection) and EOI (End of injection). In addition, the overall shape of the injection rate of DPI was narrow and the injection had a higher spray speed than that of PI. Also, DPI has a higher heat release rate and peak pressure, as verified by the engine experiment. In particular, it was found that DPI showed the possibility of combustion improvement when applying a pilot injection strategy.

  相似文献   

13.
In this study, a thermodynamic cycle simulation of a conventional four-stroke SI engine has been carried out to predict the engine performance and emissions. The first law of thermodynamics has been applied to determine in-cylinder temperature and pressure as a function of crank angle. The Newton-Raphson method was used for the numerical solution of the equations. The non-differential form of equations resulted in the simplicity and ease of the solution to predict the engine performance. Two-zone model for the combustion process simulation has been used and the mass burning rate was predicted by simulating spherical propagation of the flame front. Also, temperature dependence of specific heat capacity has been considered. The performance characteristics including power, indicated specific fuel consumption, and emissions concentration of SI engine using gasoline and CNG fuels have been determined by the model. The results of the present work have been evaluated using corresponding available experimental data of an existing SI engine running on both gasoline and CNG. It has been found that the simulated results show reasonable agreement with the experimental data. Finally, parametric studies have been carried out to evaluate the effects of equivalence ratio, compression ratio and spark timing on the engine performance characteristics in order to show the capability of the model to predict of engine operation.  相似文献   

14.
建立了直喷汽油机的三维数值模型和运动学模型,并进行了试验验证。模拟了直喷汽油机在直接起动过程中不同喷油策略和点火时刻下的燃烧特性、反转和正转过程的运动特性。结果表明:与单次喷油相比,采用两次喷油策略时,首个着火气缸内混合气燃烧后的最大气缸压力较大,而且其大小受到点火时刻的影响;首个着火气缸内混合气燃烧后的最大气缸压力较大,则直喷汽油机反转过程中转过的最大角度较大;在各种喷油条件下,第2个着火气缸在反转到其最大转角前2°左右点火,正转过程转速较高,有利于直喷汽油机的直接起动。  相似文献   

15.
Emission regulations for automobiles have become more stringent and the improvement of emission during cold start has been a major key issue to meet these regulations. Among many kinds of factors that affect cold start operation, ignition timing is crucial to improve emission characteristics due to the influence on exhaust gas temperature. Recent progress in variable valve timing allows optimized valve event strategies under various ranges of engine operating conditions including cold start. This study investigates effects of ignition and exhaust valve timing on exhaust gas temperature, combustion stability and emission characteristics through cold start bench tests of an SI engine. Experimental results show that exhaust valve timings and ignition timings significantly affect exhaust gas temperature and stability of engine operation under cold start condition. Exhaust valve timing also affects CO and NOx emission due to changes in residual gas fraction of the combustion chamber. Ignition timing mainly affects exhaust gas temperature and HC emission. A control strategy, advanced exhaust valve timing and retarded ignition, is plausible in order to achieve reduction of exhaust emission while maintaining stability under cold start operation of SI engines.  相似文献   

16.

In this investigation, an attempt has been made to study by varying the charge temperature on the ethanol fueled Homogeneous charge compression ignition (HCCI) combustion engine. Ethanol was injected into the intake manifold by using port fuel injection technique while the intake air was heated for achieving stable HCCI operation. The effect of intake air temperature on the combustion, performance, and emissions of the ethanol HCCI operation was compared with the standard diesel operation and presented. The results indicate that the intake air temperature has a significant impact on in-cylinder pressure, ringing intensity, combustion efficiency, thermal efficiency and emissions. At 170°C, the maximum value of combustion efficiency and brake thermal efficiency of ethanol are found to be 98.2% and 43%, respectively. The NO emission is found to be below 11 ppm while the smoke emission is negligible. However, the UHC and CO emissions are higher for the HCCI operation.

  相似文献   

17.
This paper describes the results obtained in a port fuel injection spark-ignition (PFI SI) engine by optical diagnostics during the fuel injection and the combustion process. A research optical engine was equipped with the fuel injection system, the head and the exhaust device of a commercial 250 cc engine for scooters and small motorcycles. Two injectors were tested: standard 3-hole injector that equipped the real reference engine and a 12-hole injector. The intake manifold was modified to allow the visualization of the fuel injection using an endoscopic system coupled with CCD camera. Size and number of the fuel droplets were evaluated through an image processing procedure. The cycle resolved visualization and chemiluminescence allowed to follow the combustion process from the spark ignition to the exhaust phase. All the optical data were correlated with engine parameters and exhaust emissions. The effect of the fuel injector type on deposits formed by fuel accumulation and dripping on the intake valves steams and seats was investigated. In particular, the evolution of diffusion-controlled flames due to the fuel deposits burning was analyzed. These flames were principally located near the intake valves, and they persisted well after the normal combustion event. The consequences were the formation and emission of soot and unburned hydrocarbons. The multi-hole injector helped reducing wall wetting and deposit formation so that the emission characteristic can be improved. The use of 12-hole injector allowed a more homogeneous distribution for a lower time of fuel droplets in the intake manifold than the 3-hole injector. This study also investigated the detailed physical/chemical phenomena to figure out reasons for the improvement using optical measurements.  相似文献   

18.
The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOX formation including thermal NO path, prompt and nitrous NOX formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.  相似文献   

19.
预燃室射流点火是改善汽油发动机热效率的有效手段,为了研究和改善被动预燃室低温冷起动及低负荷时的燃烧稳定性,设计了不同容积、孔面积、材料、喷孔结构的被动预燃室装置,安装在一台涡轮增压汽油发动机上,进行了低温冷起动试验,以及低速、低负荷燃烧稳定性试验。研究结果表明,被动预燃室容积、孔面积、材料、喷孔结构对低温冷起动性能有显著影响。预燃室容积较小时,预燃室内部淬熄层占预燃室容积的比例大,预燃室内部混合气少。较小的孔径或孔面积减少了预燃室内残余废气的排出。旋转孔使得预燃室内部废气分层,火花塞附近废气比例大。较高的导热率使预燃室冷起动时预燃室散热较快。因此,小容积、小孔径、高导热率材料以及旋转喷孔等均不利于发动机冷起动。优化结构的被动预燃室在-20℃~-8℃的冷起动工况下能实现发动机稳定着火起动。点火角和排气VVT对发动机的燃烧稳定性影响较小。进气VVT对预燃室燃烧稳定性影响较大,进气门开起时刻推迟,着火上止点附近缸内湍动能变强;另一方面实际压缩比变大,主燃烧压入预燃室内部的新鲜混合气比例提高,预燃室点火燃烧稳定性显著改善。  相似文献   

20.
稀燃天然气掺氢发动机循环变动的试验研究   总被引:1,自引:0,他引:1  
对火花点火天然气发动机而言,稀燃是提高发动机燃油经济性和降低发动机排放的一种有效途径,但稀燃导致的循环变动是拓宽稀燃极限的一个主要限制因素,在天然气中掺混氢气作为燃料,可解决稀燃工况下循环变动过大的问题。为了研究掺氢对发动机循环变动影响,选取纯天然气和掺氢体积比为20%的天然气掺氢燃料,在6缸进气道喷射增压稀燃天然气发动机上进行不同点火提前角和空燃比工况下的试验研究。通过对缸内压力特性参数、燃烧特性参数以及排放数据的分析,结果表明:掺氢可有效降低发动机最高压力循环变动和平均指示压力循环变动,在稀燃情况下效果更为明显;掺氢可降低火焰发展期和燃烧持续期及其循环变动;在稀燃工况下,掺氢对控制发动机NOx及未燃HC排放有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号