首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure variations inside a fuel injection system can lead to fluctuations in injected fuel quantity during injections and therefore can directly impact the stability and performance coherence of the fuel injection system and the engine it matched. Concepts of hydraulic capacitance and hydraulic inductance are introduced into fuel injection system by referencing LC oscillator electric circuit. A LC undamped hydraulic mathematical model is developed based on the structural parameters of the electronic unit pump (EUP). Pressure fluctuation frequency during injection process at different operating conditions of the EUP is computed by the LC undamped model. It is observed that the frequencies of pressure fluctuations tend to increase with the fuel injection process. Pressure curves and pressure fluctuation frequencies obtained by experiments at different operating conditions validated the results predicted by the LC undamped mathematical model.  相似文献   

2.

Fuel injection quantity variation of common rail system has effect on the stability and reliability of diesel engines. For purpose of investigating the influence rule and mechanism of fuel injection quantity variation caused by parameters, taking account of the influence of fuel physical properties on dynamic injection characteristics of the system, a bond graph model of common rail injector has been proposed based on bond graph methodology and the state equations of the system are obtained. Comparisons between calculated fuel injection quantities by the numerical model and experimental measurements at different rail pressures and injection pulse widths indicate that the developed model can reasonably predict the fuel injection quantity characteristic of the system. Fuel injection quantity variation characteristics caused by the parameters of common rail injector have been analyzed in entire operating conditions. The selected parameters are delivery chamber diameter, needle seat semi-angle, needle cone semi-angle, ball valve seat semi-angle, nozzle hole diameter, inlet orifice diameter and outlet orifice diameter. The variation rules of quantitative percentages are obtained by quantitative analysis upon fuel injection quantity variation influential factors. It is concluded that ball valve seat semi-angle, nozzle hole diameter, inlet orifice diameter and outlet orifice diameter have the most significant effect on fuel injection quantity variation, and the followed are delivery chamber diameter and needle seat semi-angle. In addition, needle cone semi-angle also results in the variation of fuel injection quantity, but the effect is insignificant.

  相似文献   

3.
电控直列泵─管─阀─嘴(PPVI)柴油喷射系统是一种新型的电磁阀溢流控制式直列泵喷油系统,通过分析该系统内部的压力波动过程,确定电磁控制阀在高压油路中的连接方式和最佳位置,揭示该系统的喷油量、喷油定时、喷油压力及喷油速率等方面的喷射特性,通过系统结构设计、硬件调整和软件标定解决多缸机系统的油量均匀性问题,进行电控柴油机的台架试验,表明喷射特性的可控性及其对整机综合性能的改善效果。  相似文献   

4.
With the Environmental Protection Agency (EPA) regulating the amount of NOx, Particulate, HC and CO at all driving conditions, emission standards for diesel engines are becoming more stringent than ever. To meet future emission regulations, researchers have proposed two solutions based on injection control, the common-rail type injection system, and the unit injection system. Most researchers agree that the electronically controlled unit injector, which realizes high injection pressure and precise control of SOI (Start Of Injection) and injection quantity, has an advantage in meeting future emission regulations. In order to control the start and end of injection, each unit injector contains a time-controlled high speed solenoid valve. Thus, the fuel injection quantity is determined by the time interval between closing and opening of the solenoid valve. This study introduces a method for the design of the solenoid which is installed in the unit injector. It is shown that there are certain significant parameters to be optimized to improve solenoid performance: inductance, stroke, input voltage, coil resistance, load and switching time.  相似文献   

5.
针对气体燃料电控喷射系统对气体燃料喷射量的控制精度低以及流量实时连续调节等问题,提出一种基于电磁直线执行器直接驱动菌形阀的燃料电控喷射系统。在MATLAB/Simulink下建立整个系统的控制模型,仿真计算喷射装置在不同升程下的流量特性,同时对其内部的流场进行仿真,研究其在不同的供气压力下的稳态流量。仿真结果表明,系统的流量和喷射装置的升程以及供气压力成近似线性关系。因此可以通过控制升程的大小来实现流量的连续调节,搭建了气体燃料电控喷射系统的流量特性测试试验台。试验测试在升程分别为1~4 mm和供气压力0.02~0.05 MPa时的流量特性,和仿真结果相吻合,验证了模型的正确性,同时为燃料电控喷射系统的应用提供理论基础。  相似文献   

6.
燃油喷射系统延迟特性是影响电控柴油机精确正时控制的最重要因素,在EFS油泵试验台上研究了转速、喷油量这两个因素对燃油喷射系统延迟特性的影响,利用无交互双因素方差分析法对不同转速和喷油量下的起喷及停喷延迟时间样本值进行了方差分析。分别检验了转速和喷油量对喷射以及停喷延迟时间影响的显著性。结果表明:转速对起喷及停喷延迟时间的影响都非常显著,而喷油量只对停喷时间有显著影响。利用试验和方差分析结果对延迟时间补偿脉谱的标定方案进行了改进,简化了标定工作量。  相似文献   

7.
加装文丘里管的高压废气再循环(Exhaust gas re-circulation,EGR)进气系统,在兼顾柴油机经济性、动力性的前提下,研究该进气系统对NO_x排放的影响。根据一款柴油机的基本结构建立柴油机一维仿真计算模型和燃烧室的三维仿真计算模型。在对模型进行标定和对柴油机原机性能仿真计算的基础上,为进气系统引入文丘里管装置并对其结构参数进行优化设计。应用所建立的一维和三维柴油机模型,对文丘里管EGR系统柴油机的经济性、NO_x和Soot排放特性进行仿真计算研究,并对计算结果进行试验验证。研究结果表明,优化设计的文丘里管EGR系统可使柴油机在欧洲稳态循环(European steady state cycle,ESC)各工况下实现较为理想的EGR率,并在不明显影响柴油机燃油经济性的前提下,使NO_x排放量下降了约28.4%。文丘里管进气系统可以实现较为理想的高压EGR循环,在柴油机ESC工况下(怠速除外)能够达到较为理想的EGR率。  相似文献   

8.
A numerical model of the combination electronic unit pump (CEUP) fuel injection system was developed in AMESim environment. The effects of five key influencing factors, including cam profile velocity, plunger diameter, length of high pressure fuel pipe, inner diameter of high pressure fuel pipe and nozzle flow rate on injection characteristic parameters, were analyzed by using the developed numerical model. On the basis, a correlation analysis between the influencing factors and injection characteristics was performed by using the design of experiments (DoE) method, and the influences of these factors were quantized accordingly. Relevant results show that both the single influencing factor and the interaction among these factors correlates with the injection characteristics, and the correlation represents a complex law with the cam rotational speed. The effect of plunger diameter on the injection pressure, cycle fuel injection quantity and injection duration is the most obvious, especially at a cam rotational speed of 500 r/min and the correlation coefficient is up to 0.82. The length of high-pressure pipe (HP pipe) has the most obvious influence on the coefficient of fuel feeding at cam rotational speed of 500 r/min and 800 r/min, and the correlation coefficient is negative. Overall, the independent influence of the factors is more significant than the combined influence of various factors. The CEUP fuel injection system is a complicated multi-input multi-output (MIMO) nonlinear system in fact.  相似文献   

9.
In order to improve the fuel consumption and exhaust emission for gasoline engines,gasoline direct injection (GDI) system is spotlighted to solve these requirements.Thus,many researchers focus on the i...  相似文献   

10.
A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.  相似文献   

11.
An experimental study was conducted to examine the effect of injection pressure and fuel type on the spray tip penetration length and the angle of spray injected into atmospheric chamber. The objective of the present study is to formulate empirical correlations of the spray tip penetration and the spray angle for non-evaporative condition. The experiment was performed by a common rail type high-pressure injector for the diesel engine at the injection pressure 40??100 MPa and four different fuels (D100, BD25, BD45, and BD65). The results showed that the biodiesel content increased the spray tip penetration and decreased the spray angle. The correlation of spray tip penetration is expressed for each region before and after spray break-up time in terms of injection pressure, fuel viscosity and time after start of injection. The correlation is also obtained for spray angle equation terms of injection pressure and fuel viscosity.  相似文献   

12.
Performance of diesel engines are influenced by fuel spray distribution, fuel-air mixture formation and combustion, which are also influenced by hole-to-hole fuel injection rate from multi-hole injectors. In this study, a customized spray momentum flux experimental test rig was used to measure the transient injection rates from a two-layered 8-hole diesel injector. The results indicated that the fuel injection rate and the cycle fuel injection quantities of the lower-layered nozzle holes were 3–15% higher than the fuel injection rates and the cycle fuel injection quantities of the upper-layered nozzle holes. A three-dimensional (3D) computational fluid dynamics (CFD) model of the two-layered 8-hole diesel injection nozzle was developed and validated by analyzing the relative error between the numerical results obtained from the model and the experimental results measured with the test injector. The simulation results showed that the relative average deviation of hole-to-hole cycle injection quantities were less than ±1%, which is the result of 5% increment in the cross-sectional area of the upper-layered holes.  相似文献   

13.
The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector’s needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector’s needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle’s behavior with an accelerometer and injection rate measurement employing Bosch’s method was conducted. The experimental results show that the spray tip penetrations of piezodriven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.  相似文献   

14.
A mathematical model of gaseous fuel solenoid injector for spark ignition engine has been realized and validated through experimental data. The gas injector was studied with particular reference to the complex needle motion during the opening and closing phases, which strongly affects the amount of fuel injected. As is known, in fact, when the injector nozzle is widely open, the mass flow depends only on the fluid pressure and temperature upstream the injector: this allows one to control the injected fuel mass acting on the “injection time” (the period during which the injector solenoid is energized). This makes the correlation between the injected fuel mass and the injection time linear, except for the lower injection times, where we experimentally observed strong nonlinearities. These nonlinearities arise by the injector outflow area variation caused by the needle bounces due to impacts during the opening and closing transients [1] and may seriously compromise the mixture quality control, thus increasing both fuel consumption and pollutant emissions, above all because the S.I. catalytic conversion system has a very low efficiency for non-stoichiometric mixtures. Moreover, in recent works [2, 3] we tested the simultaneous combustion of a gaseous fuel (compressed natural gas, CNG, or liquefied petroleum gas, LPG) and gasoline in a spark ignition engine obtaining great improvement both in engine efficiency and pollutant emissions with respect to pure gasoline operation mode; this third operating mode of bi-fuel engines, called “double fuel” combustion, requires small amounts of gaseous fuel, hence forcing the injectors to work in the non-monotonic zone of the injected mass diagram, where the control on air-fuel ratio is poor. Starting from these considerations we investigated the fuel injector dynamics with the aim to improve its performance in the low injection times range. The first part of this paper deals with the realization of a mathematical model for the prediction of both the needle motion and the injected mass for choked flow condition, while the second part presents the model calibration and validation, performed by means of experimental data obtained on the engine test bed of the internal combustion engine laboratory of the University of Palermo.  相似文献   

15.
喷嘴参数对柴油机喷油规律与性能的影响   总被引:1,自引:0,他引:1  
采用广安博之(Hiroyasu)等准维模型,建立高原运行柴油机工作过程模型;基于一维非定常可压缩理论建立柴油机喷射系统模型,二者耦合计算高原环境喷油器主要结构参数对柴油机实际运行时的喷油规律、燃烧特性和输出性能的影响.台架试验验证了模型的可信性.结果表明:喷孔数和喷孔直径对喷油规律影响最为敏感,喷孔夹角对喷油规律影响微弱.在海拔4 000m时,针对该型柴油机,喷孔面积存在一个最优区间,在该区间给出了功率变化率和喷孔面积的关系式.在燃烧室结构和供油系统参数不变的情况下,当喷孔面积减小为原喷孔的25%~60%时,柴油机功率最大提升8.5%;油耗最大下降8.8%,排气温度下降35℃以上.但是缸内温度明显上升,NOx排放恶化.研究为通过优化喷油器参数改善高原运行柴油机燃烧和性能提供了参考.  相似文献   

16.

In this study, the effects of two piezo injectors operated by different mechanisms on multi-injection and Compression ignition (CI) combustion were investigated. High-pressure injectors for CI engines are divided into two categories according to the actuator: Solenoid and piezo injectors. It is commonly known that both injectors have a hydraulic circuit for fuel injection; thus, the performance of the injector is highly dependent on not only hydraulic characteristics such as volume of internal chambers and nozzle geometry, but also the actuation mechanism. Specially, the direct needle-Driven piezo injector (DPI) is introduced in this study and compared with the indirectacting Piezo injector (PI) to investigate the injection characteristics and influences on CI combustion performance by using spray visualization, injection rate measurement, and single cylinder diesel engine experiments, as well as numerical simulation for injection rate modeling of DPI. In the spray visualization experiment, a high-speed camera was used to examine spray tip penetration length and spray speed with respect to each injector. Also, in order to investigate injection rate information, which is a significantly dominant factor in combustion characteristics, the Bosch-tube method was adapted under the condition of a back pressure of 4.5 MPa, corresponding to engine motoring pressure. Also, a single-cylinder CRDi (Common-rail direct-injection) engine experiment was carried out to determine the effects of different piezo-acting mechanisms on two-stage fuel injection and CI combustion. From the key results obtained by this study, the direct needle-driven piezo injector has a faster SOI (Start of injection) and EOI (End of injection). In addition, the overall shape of the injection rate of DPI was narrow and the injection had a higher spray speed than that of PI. Also, DPI has a higher heat release rate and peak pressure, as verified by the engine experiment. In particular, it was found that DPI showed the possibility of combustion improvement when applying a pilot injection strategy.

  相似文献   

17.
The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.  相似文献   

18.
We investigated the DME spray characteristics about varied ambient pressure and fuel injection pressure using the common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system and fuel cooling system were used since DME has compressibility and vaporization at atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray was analyzed for spray shape, penetration length, and spray angle at the six nozzle holes. There are two types of injectors: 0.166 mm diameter and 0.250 mm diameter. The ambient pressure, which was based on gage pressure, was 0, 2.5, and 5 MPa. The fuel injection pressure was varied by 5 MPa from 35 to 70 MPa. By comparing with the common injector, using the converted injector it was shown that the DME injection quantity was increased 127% but it didn??t have the same low heating value. Both the common and converted injectors had symmetric spray shapes. In case of converted injector, there were asymmetrical spray shapes until 1.2 ms, but after 1.2 ms the spray shapes were symmetric. Also, the converted injector had shorter penetration length and wider spray angle than the common injector.  相似文献   

19.
喷油器是电控喷油系统中最基本、最关键的元件之一,它接受电子控制单元(ECU)发出的控制指令,完成喷油过程,以实现满足系统要求的各种不同喷油规律。由于喷油器的工作油压很高,为保证其工作的安全性和可靠性,检验其结构参数是否合理,有必要对其进行有限元强度计算。本文采用大型CAD软件I-DEAS Master SeriesTM,对喷油器体进行了强度计算和应变分析。对喷油器的结构参数和材料选择进行了调整和优化,为喷油器的结构设计和材料选用提供理论指导,提高设计成功率,降低开发成本。  相似文献   

20.
为了检测高压共轨喷油器的工作性能,改善汽车尾气的排放质量,对高压共轨喷油器的动作原理及其检测波形进行了分析,并对喷油器的喷油量进行了计算。采用PLC技术,利用PWM方法,设计了一种喷油器检测电路及其测试平台,可以检测各类型号的高压共轨喷油器在怠速及全油门状态下的喷油状况,对其喷油质量给出判定,该平台也可进行喷油嘴驱动电路的优化研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号