首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NiAl-Ni3Al intermetallic composites (IC) and intermetallic matrix composites (IMC) with TiC and WC reinforcement were laser clad to increase the liquid impact erosion resistance of AISI 420 Martensitic stainless steel. Laser process parameter optimisation and pre- and post-heat treatment of the laser clad specimens were carried out to minimise porosity and sensitivity to crack formation. The coatings were characterised by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS). The erosion resistance of the substrate material at a water droplet exit velocity of up to 150 m/s was improved from 116.9 to 838.7 min/mm3 for the nickel aluminide IC coating and from 855 to 1446 min/mm3 for the IMC coating with TiC and WC reinforcement. The pseudo-elasticity combined with the high work hardening ability was attributed to the excellent erosion resistance of nickel aluminide IC coatings. The IMC coatings with ceramic reinforcement extended significantly the initial resistance against liquid impact erosion. However, once damage occurred the erosion accelerated rapidly. No direct correlation could be established between the erosion resistance and the mechanical properties. The influence of hardness, elastic modulus, strain-hardening coefficient and the reversible penetration ratio on the erosion resistance was discussed.  相似文献   

2.
The friction and wear properties of Pb, PbO, Pb3O4, or PbS filled polytetrafluoroethylene (PTFE) composites sliding against GCr15 bearing steel under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester. The worn surfaces and the transfer films of these PTFE composites formed on the surface of GCr15 bearing steel were then investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling Pb, PbO, Pb3O4 or PbS to PTFE can greatly reduce the wear of the PTFE composites, but the wear reducing action of Pb3O4 is the most effective. Meanwhile, PbS increases the friction coefficient of the PTFE composite, but Pb and Pb3O4 reduce the friction coefficients of the PTFE composites. However, the friction and wear properties of lead or its compounds filled PTFE composites can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of the PTFE composites can be decreased by one order of magnitude. Optical microscope investigation of transfer films shows that Pb, PbO, Pb3O4 and PbS enhance the adhesion of the transfer films to the surface of GCr15 bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of GCr15 bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. SEM examination of worn surfaces shows that the interaction between liquid paraffin and the PTFE composites creates some cracks on the worn surfaces of the PTFE composites; the creation and development of the cracks reduces the load-carrying capacity of the PTFE composites, and this leads to deterioration of the friction and wear properties of the PTFE composites filled with lead or its compounds under higher loads in liquid paraffin lubrication.  相似文献   

3.
This paper investigates the scratch and normal hardness characteristics of polyamide 6/nano-clay composite. It is found that the weight percentage (wt%) of nano-clay greatly affects the scratch properties of the composite because of the intercalated structure of the nano-clay in the composite for higher clay loading. The scratch hardness, computed using the scratch width data, decreases while the scratch force increases as the wt% of nano-clay particles added into the composite increases. On the other hand, normal hardness increases and so do the yield strength and the elastic modulus when the percentage of nano-clay is increased in the composite. The SEM images show that the width of the scratch groove increases as the weight percentage of nano-clay in composite increases. However, the depth of the scratch groove indicates the opposite trend. Such contrasting behavior between the scratch hardness and other mechanical properties is explained based on the microscopic image study and the change in the nature of this nano-composite with increasing wt% of the nano-clay. Finally, important sources of error in the measurement of scratch hardness of these nano-composites are also highlighted.  相似文献   

4.
The paper presents the investigation results of tribological properties of metals, metal-like compounds, and composite materials at high temperatures. The factors affecting seizure in like and unlike combinations of materials are discussed along with their adequacy for operation in high-temperature friction joints in various media.  相似文献   

5.
The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al2O3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s−1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al2O3 nano-particles or 500 nm Al2O3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al2O3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al2O3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al2O3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al2O3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al2O3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al2O3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.  相似文献   

6.
Journal of Mechanical Science and Technology - In order to study the formation and characteristics of the lubricating film of graphite composites in solid lubrication, the mechanical properties,...  相似文献   

7.
A series of plasma sprayed alumina coatings was evaluated regarding their erosion and abrasion characteristics. The coatings were deposited under different spraying conditions, using a commercial axial injection plasma spray system, and with powders of different grit sizes and crystallinity. A sintered bulk alumina and a conventionally sprayed coating, produced by a radial injection air plasma spray technique, were tested as reference materials. To evaluate the importance of energy input the coatings were produced using two different torch nozzle sizes and gas mixtures with a varied amount of hydrogen. The erosion and abrasion results indicate that hydrogen concentration, nozzle size and precursor powder type and size influence the tribological characteristics of the coatings. The wear resistance of the coatings seems to benefit from an increase in hydrogen concentration or torch nozzle size. The effect of precursor powder size on the wear resistance was more complex but indicates that sapphire powders of medium precursor sizes are advantageous to ordinary plasma spraying powders of alumina.  相似文献   

8.
A unidirectional SiCf –YMAS glass–ceramic composite has been developed by Céramiques-Composites (Bazet) and ONERA (Establishment of Palaiseau) in France. The matrix is totally crystalline and consists essentially of two main phases, cordierite and yttrium disilicate, with some minor phases, mullite, spinel, zirconium and titanium oxides. Image analysis methods have been used to characterize the homogeneity of the composite plates and to obtain granulometric information on the different matrix phases. Different interphase layers formed during the process by reaction between the matrix and the Nicalon NLM 202 fibres have been studied by using HREM and EDX. Their chemical composition has been determined by stepping the probe (8 nm) across the fibre–matrix interface. Two distinct nanoscale sublayers have been imaged. The sublayer on the matrix side has a light contrast in the TEM. The microstructure of this layer (≈ 80 nm) is typical of a turbostratic carbon. The carbon layer also contains Al, O, Mg and Si. The silicon content is low in the carbon layer. The sublayer on the fibre side (≈ 100 nm thick) has a dark contrast in the TEM. Profiles have been taken across this sublayer also. Tensile creep tests in air have been performed to investigate the tensile creep behaviour at 1223 K. They have been conducted in the 50–200 MPa stress range. Tensile creep results indicate that creep rates are of the same order of magnitude as for other glass–ceramic composites. Optical micrographs and SEM observations have revealed the damage in the composite. Changes occurring in the interface region have been studied at a finer scale by TEM and HREM at the surface of the sample and in the core. These observations enable us to explain the mechanical behaviour of the composite observed on a macroscopic scale.  相似文献   

9.
《Wear》2004,256(1-2):9-15
This paper deals with the effect of counterpart material (hardened steel, austenitic steel, and Al2O3), internal lubricant (PTFE, graphite, MoS2, and SnS2), and fibre reinforcement (glass and carbon fibres) on the wear of epoxy-based composites. Under dry conditions the high chromium austenitic steel led to a lower composite wear than the bearing steel. Alumina counterparts produced results similar to the austenitic steel. In a dry environment, only PTFE led to a remarkable wear reduction, while all other fillers had no significant effect regardless of the counterpart material. For wet conditions the Al2O3 ceramic seems to be most promising. The carbon fibre reinforced version had the best wear performance under aqueous conditions.  相似文献   

10.
F. H. Stott  M. P. Jordan 《Wear》2001,250(1-12):391-400
Transitions to low wear rates often occur during sliding between contacting metal surfaces, due to the establishment of high-resistance load-bearing layers. Such layers are developed from compaction of wear debris particles, with adhesion between the particles being an important factor in determining whether the layers are maintained, leading to wear protection, or break down, leading to abrasive wear. They are formed more easily and retained more effectively at higher temperatures, due to increased sintering and adhesion between the debris particles and to enhanced oxidation of these particles. This paper presents the results of a study of the reciprocating sliding wear and friction of dissimilar combinations of pin and disc steel specimens (high-speed steel and high-chrome steel pins and carbon steel discs) at temperatures of 500–600°C, with emphasis on the influence of load and substrate hardness on the development and maintenance of such wear-protective particulate layers. Complex relationships occur between the effects of increased load in producing larger debris particles, in decreasing the critical particle size for establishing the layers and in decreasing the separation between the sliding surfaces, and the effects of hardness of the substrates on the sizes and amounts of wear particles and on the topographies of the wear scars. The relationships are complicated further by oxidation and sintering of debris particles, leading to development of oxide or oxide-containing ‘glaze’ surfaces, and subsequent breakdown of the layers during sliding.  相似文献   

11.
This research demonstrates the use of submerged friction stir welding under liquid nitrogen as an alternative and improved method for creating fine-grained welds, and hence, to alleviate formation of intermetallic phases. Magnesium alloy and aluminum alloy were joined by friction stir welding in two environments, namely air and liquid nitrogen, with 400 rpm rotation and 50 mm/min travel speed. The temperature profile, microstructure, scanning electron microscope energy dispersive X-ray spectroscopy analysis and hardness were evaluated. In the stir zone of air-welded specimen, formation of brittle intermetallic compounds causes the weld to crack. These phases were formed because of constitutional liquation. The stir zone of under liquid nitrogen-welded specimen showed that formation of intermetallic compounds is suppressed significantly because of lower heat input.  相似文献   

12.
13.
Aluminum alloy matrix composites reinforced with SiC particles (AMC) are potential materials applicable to weight reduction of friction materials. We developed two AMC: A356/SiC and A390/SiC. 30 ??m and 60 ??m SiC particles with volume fraction of 20% were dispersed in the matrix of A356 and A390 alloys. When the temperature of the liquid alloy was higher than that of the melting point, SIC particles floated up to the surface because of the low viscosity, high surface tension and interfacial energy. To mix the ceramic particles, the aluminum alloy was in the mushy state near the solidus temperature, 610°C for A356 and 645°C for A390. Metallurgical, mechanical and tribological characteristics of the manufactured composites were evaluated.  相似文献   

14.
Friction experiments were conducted on C/C composites at low and high temperatures during braking with the use of a pin-on-disc tribometer. The surface grooves formed were investigated by an optical camera and a laser profilometer, while scratches were characterized by optical microscopy. Damages were correlated with tribological performances (friction and wear). It is shown that friction at low temperature leads to high friction coefficient and wear rate, and to surfaces strongly grooved and abraded. For friction experiments performed at high temperature, they lead to lower friction coefficient and wear, and the resulting surfaces are rather smooth and slightly grooved.  相似文献   

15.
This study examined the tribological behavior of journal bearings made from polytetrafluoroethylene (PTFE) composites and aluminum (Al) alloys. The PTFE composite journal bearings consisted of a steel backing with a thickness of 1.6 mm, a middle layer of sintered porous bronze with a thickness of 0.24~0.27 mm, and a surface layer of PTFE filled with fluorinated ethylene propylene (FEP) powder and carbon fibers with a thickness 0.06~0.14 mm. The other was an aluminum alloy journal bearing consisted of a steel backing with a thickness of 1.5 mm and a surface layer of an Al-6Sn-6Si alloy with a thickness 0.35~0.75 mm. A series of lubrication tests were performed using a journal bearing tester under various normal loads. The tribological properties for each journal bearing were evaluated by measuring the lubricant oil temperature and friction coefficient as a function of the applied normal load. In addition, the chemical compositions and microstructures of the journal bearing materials used in this study was analyzed by inductively coupled plasma (ICP), optical microscopy (OM), and scanning electron microscopy (SEM), respectively. The experimental results showed that the Al alloy journal bearings reduce the friction coefficient by 28 % compared to the PTFE composites bearings. In addition, the Al alloy journal bearing worked properly at the maximum load of ~ 8,000 N without adhesion. However, the PTFE composite journal bearings exhibited strong adhesion at the loads ranging from 6300 to 8000 N. This suggests that the Al alloy is a more promising material in journal bearings than PTFE composites.  相似文献   

16.
SiCf–SiBC composites fabricated by Snecma Propulsion Solide (St Médard en Jalles, France) were investigated by SEM and HRTEM in the as‐received state and after creep tests performed in air, in a temperature range 1423–1573 K, under 170 and 200 MPa. These composites are reinforced by Hi‐Nicalon fibres (Nippon Carbon). A pyrocarbon interphase was first deposited on the fibres. The matrix was then deposited on the fibrous preform by several chemical vapour infiltrations (CVI). As a result the matrix is multilayered and based on the Si–B–C ternary system. This matrix is self‐sealing: this is due to the presence of boron inducing the formation of a sealant glass if the material is heated in an oxidative environment. This glass will protect fibres and fibre/matrix interphases against oxidation. Hi‐Nicalon fibres as well as the different matrix layers were studied by HRTEM and EDX. Some investigations were carried out on the creep‐tested specimens in order to characterize modifications observed in the different constituents of the composites, particularly at the interfaces between the matrix layers and at the fibre/matrix interface. It was shown that several matrix layers crystallized during the creep tests. Moreover, a thin silica layer was observed at the pyrocarbon/matrix interfaces. Differences between the behaviour of the same type of material creep tested under neutral atmosphere are discussed.  相似文献   

17.
Y. Yamamoto  F. Hirano 《Wear》1980,63(1):165-173
The effect on scuffing resistance of a change in the condition of the rubbing surfaces, especially surface hardness, was investigated using a two-disc machine. Scuffing resistance increased with increasing surface hardness during testing. The increase of surface hardness by work hardening is more beneficial in preventing scuffing than is a change in carbon content or heat treatment. Work-hardened disc surfaces allow surface film formation as a result of plastic deformation. Materials with large Meyer indices and high surface hardness are less prone to scuffing.  相似文献   

18.
19.
陈飞  郭秀清  霍勇 《机电一体化》2010,16(12):39-42,46
在建立PWM控制的AC/DC变换器基础上,对开关电源的反馈控制系统进行了详细分析,给出了开关电源的闭环控制系统的电路组成和数学模型,用Matlab对控制参数进行了整定,用simulink电力模块对系统进行仿真,结果表明根据系统模型设计的开关电源是可行的。  相似文献   

20.
Design factor problems related to galling failure have become an increasing concern for deepwater offshore wells. This paper presents the results of an experimental study conducted to determine friction characteristics of P-110 tubing coated with manganese phosphate and plated with tin. Six repeated tests were run to investigate the effect of lubrication type on friction characteristics of P-110 tubing by using thread compounds of API modified Threadkote-706, Shell Type-3 and Graphite/PTFE at a rotational speed of 5 rpm. In each test the bearing load was increased monotonically to a maximum value of 625 kN. The results of this study clearly indicate the importance of tin-plating in reducing the coefficient of friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号