首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siderophores and colicins enter bacterial cells through TonB-dependent outer membrane proteins. Using site-directed substitution mutagenesis, we studied ligand recognition by a prototypic Escherichia coli siderophore receptor, FepA, that binds the iron chelate ferric enterobactin and colicins B and D. These genetic experiments identified a common binding site for two of the three ligands, containing multiple positive charges, within cell surface residues of FepA. Elimination of single residues in this region did not impair the adsorption or transport of ferric enterobactin, but double mutagenesis in the charge cluster identified amino acids (Arg-286 and Arg-316) that participate in siderophore binding and function in FepA-mediated killing by colicins B and D. Ferric enterobactin binding, furthermore, prevented covalent modification of FepA within this domain by either a fluorescent probe or an arginine-specific reagent, corroborating the involvement of this site in ligand recognition. These results identify, for the first time, residues in a TonB-dependent outer membrane protein that participate in ligand binding. They also explain the competition between ferric enterobactin and the colicins on the bacterial cell surface: all three ligands interact with the same arginine residues within FepA during their penetration through the outer membrane.  相似文献   

2.
The Escherichia coli FepA protein is an energy- and TonB-dependent, ligand-binding porin that functions as a receptor for the siderophore ferric enterobactin and colicins B and D. We characterized the kinetic and thermodynamic parameters associated with the initial, energy-independent steps in ligand binding to FepA. In vivo experiments produced Kd values of 24, 185, and 560 nM for ferric enterobactin, colicin B, and colicin D, respectively. The siderophore and colicin B bound to FepA with a 1:1 stoichiometry, but colicin D bound to a maximum level that was 3-fold lower. Preincubation with ferric enterobactin prevented colicin B binding, and preincubation with colicin B prevented ferric enterobactin binding. Colicin B release from FepA was unexpectedly slow in vivo, about 10-fold slower than ferric enterobactin release. This slow dissociation of the colicin B.FepA complex facilitated the affinity purification of FepA and FepA mutants with colicin B-Sepharose. Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex.  相似文献   

3.
The serum and milk immunoglobulin (Ig) G responses of lactating dairy cows were determined following immunization with ferric enterobactin receptor FepA. Escherichia coli 471 was cultured in iron-depleted medium, and outer membrane proteins were extracted by 2% N-lauroylsarcosine sodium salt and 2% Triton X-100. The FepA was isolated from the outer membrane proteins by ion-exchange chromatography. Twenty cows were assigned to four treatment groups of 5 cows blocked by breed and days in milk. Treatment groups were vaccinated with 100 micrograms of FepA, 500 micrograms of FepA, Escherichia coli J5 bacterin, or sterile phosphate-buffered saline. Primary immunization was at approximately 200 d in milk, and booster immunizations were given 14 and 28 d later. Serum and whey IgG titers to FepA in cows vaccinated with FepA were significantly higher than those from cows vaccinated with either E. coli J5 bacterin or phosphate-buffered saline. Serum and whey IgG titers to FepA were elevated by 14 d in cows vaccinated with FepA. Significant differences were not observed between doses of FepA. The degree of cross-reactivity of purified IgG from cows vaccinated with FepA to E. coli and Klebsiella pneumoniae isolates was significantly higher than that to a control isolate that lacked FepA production. Immunization with FepA elicited an immunological response in serum and milk.  相似文献   

4.
5.
FhuD is the periplasmic binding protein of the ferric hydroxamate transport system of Escherichia coli. FhuD was isolated and purified as a His-tag-labeled derivative on a Ni-chelate resin. The dissociation constants for ferric hydroxamates were estimated from the concentration-dependent decrease in the intrinsic fluorescence intensity of His-tag-FhuD and were found to be 0.4 microM for ferric aerobactin, 1.0 microM for ferrichrome, 0.3 microM for ferric coprogen, and 5.4 microM for the antibiotic albomycin. Ferrichrome A, ferrioxamine B, and ferrioxamine E, which are poorly taken up via the Fhu system, displayed dissociation constants of 79, 36, and 42 microM, respectively. These are the first estimated dissociation constants reported for a binding protein of a microbial iron transport system. Mutants impaired in the interaction of ferric hydroxamates with FhuD were isolated. One mutated FhuD, with a W-to-L mutation at position 68 [FhuD(W68L)], differed from wild-type FhuD in transport activity in that ferric coprogen supported promotion of growth of the mutant on iron-limited medium, while ferrichrome was nearly inactive. The dissociation constants of ferric hydroxamates were higher for FhuD(W68L) than for wild-type FhuD and lower for ferric coprogen (2.2 microM) than for ferrichrome (156 microM). Another mutated FhuD, FhuD(A150S, P175L), showed a weak response to ferrichrome and albomycin and exhibited dissociation constants two- to threefold higher than that of wild-type FhuD. Interaction of FhuD with the cytoplasmic membrane transport protein FhuB was studied by determining protection of FhuB degradation by trypsin and proteinase K and by cross-linking experiments. His-tag-FhuD and His-tag-FhuD loaded with aerobactin specifically prevented degradation of FhuB and were cross-linked to FhuB. FhuD loaded with substrate and also FhuD free of substrate were able to interact with FhuB.  相似文献   

6.
The fhuA genes of Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans were sequenced and compared with the known fhuA sequence of Escherichia coli. The highly similar FhuA proteins displayed the largest difference in the predicted gating loop, which in E. coli controls the permeability of the FhuA channel and serves as the principal binding site for the phages T1, T5, and phi80. All the FhuA proteins contained the region in the gating loops required in E. coli for ferrichrome and albomycin transport. The three subdomains required for phage binding were contained in the gating loop of S. paratyphi B which is infected by the E. coli phages, whereas two of the subdomains were deleted in S. typhimurium and P. agglomerans which are resistant to the E. coli phages. Small deletions in a surface loop adjacent to the gating loop, residues 236 to 243 and 236 to 248, inactivated E. coli FhuA with regard to transport of ferrichrome and albomycin, but sensitivity to T1 and T5 was fully retained and sensitivity to phi80 and colicin M was reduced 10-fold. Full-size FhuA hybrid proteins of S. paratyphi B and S. typhimurium displayed S. paratyphi B FhuA activity when the hybrids contained two-thirds of either the N- or the C-terminal portions of S. paratyphi B and displayed S. typhimurium FhuA activity to phage ES18 when the hybrid contained two-thirds of the N-terminal region of the S. typhimurium FhuA. The central segment of the S. paratyphi B FhuA flanked on both sides by S. typhimurium FhuA regions conferred full sensitivity only to phage T5. The data support the essential role of the gating loop for the transport of ferrichrome and albomycin, identified an additional loop for ferrichrome and albomycin uptake, and suggest that several segments and their proper conformation, determined by the entire FhuA protein, contribute to the multiple FhuA activities.  相似文献   

7.
Soluble uranyl ion [UO2(2+), U(VI)] is a kidney poison. Uranyl ion accumulates in bone, and the high specific activity uranium isotopes induce bone cancer. Although sought since the 1940's, no multidentate ligand was identified, until now, that efficiently and stably binds U(VI) at physiological pH, promotes its excretion, and reduces deposits in kidneys and bone. Ten multidentate ligands patterned after natural siderophores and composed of sulfocatechol [CAM(S)], carboxy-catechol [CAM(C)], or hydroxypyridinone [Me-3,2-HOPO] metal-binding units have been tested for in vivo chelation of U(VI). Ligands were injected intraperitoneally (i.p.) into mice 3 min after intravenous (i.v.) injection of 233U or (232+235)U as UO2Cl2 [ligand-to-metal molar ratio 75 to 92]. Regardless of backbone structure, denticity, or binding unit, all 10 ligands significantly reduced kidney U(VI) compared with controls or with mice given CaNa3-DTPA, and four CAM(S) or CAM(C) ligands also significantly reduced skeleton U(VI). Several ligands removed U(VI) from kidneys, when injected at 1 or 24 h. Injected at molar ratios > or = 300, 5-LIO(Me-3,2-HOPO) and TREN-(Me-3,2-HOPO) reduced kidney U(VI) to about 10% of control. Given orally to fasted mice at molar ratios > or = 300, those ligands significantly reduced kidney U(VI). In mice injected i.v. with 0.42 micromol kg(-1) of 235U and given 100 micromol kg(-1) of one of those Me-3,2-HOPO ligands i.p. daily for 10 d starting at 1 h after the U(VI)) loss of kidney U(VI) was greatly accelerated, and the kidneys of treated mice showed no microscopic evidence of renal injury. Crystals of uranyl chelates with linear tetradentate ligands containing bidentate Me-3,2-HOPO groups demonstrate a 1:1 structure. Considering low toxicity, effectiveness, and reasonable cost, the structurally simple linear tetradentate ligands based on the 5-LI backbone (diaminopentane) offer the most promising approach to a clinically acceptable therapeutic agent for U(VI). Work is in progress to identify the most suitable CAM or HOPO binding unit(s).  相似文献   

8.
9.
The first class Ib ribonucleotide reductase R2 structure, from Salmonella typhimurium, has been determined at 2.0 A resolution. The overall structure is similar to the Escherichia coli class Ia enzyme despite only 23% sequence identity. The most spectacular difference is the absence of the pleated sheet and adjacent parts present in the E. coli R2 structure; the heart-shaped structure loses its tip. From sequence comparisons, it appears that this feature is shared with all other class Ib enzymes and, in this respect, is more like the mammalian class Ia enzymes. Both the oxidized and reduced iron forms have been investigated. In the ferric iron center, both iron ions are octahedrally coordinated and bridged by one carboxylate and one oxide ion. The ferrous form has lost the bridging oxide ion but is bridged by two carboxylates. Accompanying the change in redox state, helix E changes its conformation from one covering the metal center in the oxidized form to a more open reduced form. A narrow channel is opened which may permit easier access of oxygen to the ferrous iron site and to efficiently generate the tyrosyl radical.  相似文献   

10.
An alternative approach to the development of clinically useful protease inhibitors was investigated. The approach utilized coordination chemistry of transition metal ions rather than substrate analogs to block active sites of these enzymes. In the case of serine proteases it was found that aqueous Ti(IV) is a potent inhibitor of the trypsin subclass, but not the chymotrypsin subclass. The direct binding of Ti(IV) to trypsin was made possible by the presence of a free carboxyl group at the bottom of the substrate binding pocket of the enzyme, and the five-coordinate geometry of TiO(SO4)(H2O). Although initial binding of Ti(IV) was reversible, it was followed in time by irreversible inhibition. Direct binding of octahedral or tetrahedral metal ion complexes was prevented by the inability of the enzyme active sites to promote formation of a five-coordinate transition state of the metal ion required for reaction. These studies demonstrate the ability of direct metal ion binding as a way to enhance blocking of enzyme active sites as compared with that of traditional organic inhibitors. Application of these findings was investigated by measuring the affect Ti(IV) had on growth of Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa. Five-coordinate titanyl sulfate completely inhibited the growth of these organisms. This suggests that five-coordinate titanyl sulfate, which is easier and less expensive to manufacture than conventional antibiotics, may be useful in controlling endemic infections of E. coli and S. typhimurium.  相似文献   

11.
Tannic acid, propyl gallate and methyl gallate, but not gallic acid, were found to be inhibitory to the growth of intestinal bacteria Bacteroides fragilis ATCC 25285, Clostridium clostridiiforme ATCC 25537, C. perfringens ATCC 13124, C. paraputrificum ATCC 25780, Escherichia coli ATCC 25922, Enterobacter cloacae ATCC 13047, Salmonella typhimurium TA98 and S. typhimurium YG1041 at 100-1000 microg/ml in culture broth. Neither Bifidobacterium infantis ATCC 15697 nor Lactobacillus acidophilus ATCC 4356 was inhibited by any of the above compounds up to 500 microg/ml. Tannic acid has a much greater relative binding efficiency to iron than propyl gallate, methyl gallate or gallic acid. The inhibitory effect of tannic acid to the growth of intestinal bacteria may be due to the strong iron binding capacity of tannic acid; whereas the effect of propyl gallate and methyl gallate probably occurs by a different mechanism. The growth of E. coli was restored by the addition of iron to the medium after the precipitate caused by tannic acid was removed. Neither B. infantis nor L. acidophilus require iron for growth. This probably contributes to their resistance to tannic acid. Because tannins are abundant in the human diet, tannins may affect the growth of some intestinal bacteria and thus may have an impact on human health.  相似文献   

12.
Klebsiella oxytoca M5a1 has the capacity to transport and to metabolize alpha-, beta- and gamma-cyclodextrins. Cyclodextrin transport is mediated by the products of the cymE, cymF, cymG, cymD, and cymA genes, which are functionally homologous to the malE, malF, malG, malK, and lamB gene products of Escherichia coli. CymE, which is the periplasmic binding protein, has been overproduced and purified. By substrate-induced fluorescence quenching, the binding of ligands was analyzed. CymE bound alpha-cyclodextrin, beta-cyclodextrin, and gamma-cyclodextrin, with dissociation constants (Kd) of 0.02, 0.14 and 0.30 microM, respectively, and linear maltoheptaose, with a Kd of 70 microM. In transport experiments, alpha-cyclodextrin was taken up by the cym system of K. oxytoca three to five times less efficiently than maltohexaose by the E. coli maltose system. Besides alpha-cyclodextrin, maltohexaose was also taken up by the K. oxytoca cym system, but because of the inability of maltodextrins to induce the cym system, growth of E. coli mal mutants on linear maltodextrin was not observed when the cells harbored only the cym uptake system. Strains which gained this capacity by mutation could easily be selected, however.  相似文献   

13.
Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.  相似文献   

14.
Brush border membrane vesicles isolated from Caco-2 cells were used to examine whether there is an apical membrane-associated ferric reductase activity in small intestinal enterocytes. A ferric reductase activity which was dependent on NADH or NADPH as reductants was shown. Reduction of Fe(III) was quantified by the formation of a stable Fe(II)/ferrozine complex. The ferric reductase revealed saturation kinetics with a K(m) of 4.12 +/- 0.65 micromol/L and a Vmax of 3.11 +/- 0.043 nmol/(min.mg protein) for NADH. About 25% of the electrons for the NADH-dependent ferric iron reduction were transferred indirectly from the superoxide anion as verified by the superoxide dismutase inhibitable ferric iron reduction rate. However, the main part of Fe(III) reduction occurs directly by catalyzed electron transfer from NADH to ferric iron through (an) enzyme(s) located in the brush border membrane. The ferric reductase activity was inhibited by Pt(II) and especially p-chloromercuribenzoate. Ferricyanide, which is also reduced by the enzyme, is a competitive inhibitor of the Fe(III)/nitrilotriacetate (NTA) complex with a Ki of 43 micromol/L. These results suggest that brush border membranes of enterocytes possess a ferric reductase that reduces ferric to ferrous iron before the iron is transported through the microvillous membrane.  相似文献   

15.
Human neutrophils contain two structurally distinct types of antimicrobial peptides, beta-sheet defensins (HNP-1 to HNP-4) and the alpha-helical peptide LL-37. We used radial diffusion assays and an improved National Committee for Clinical Laboratory Standards-type broth microdilution assay to compare the antimicrobial properties of LL-37, HNP-1, and protegrin (PG-1). Although generally less potent than PG-1, LL-37 showed considerable activity (MIC, <10 microgram/ml) against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, and vancomycin-resistant enterococci, even in media that contained 100 mM NaCl. Certain organisms (methicillin-resistant S. aureus, Proteus mirabilis, and Candida albicans) were resistant to LL-37 in media that contained 100 mM NaCl but were susceptible in low-salt media. Burkholderia cepacia was resistant to LL-37, PG-1, and HNP-1 in low- or high-salt media. LL-37 caused outer and inner membrane permeabilization of E. coli ML-35p. Chromogenic Limulus assays revealed that LL-37 bound to E. coli O111:B4 lipopolysaccharide (LPS) with a high affinity and that this binding showed positive cooperativity (Hill coefficient = 2.02). Circular dichroism spectrometry disclosed that LL-37 underwent conformational change in the presence of lipid A, transitioning from a random coil to an alpha-helical structure. The broad-spectrum antimicrobial properties of LL-37, its presence in neutrophils, and its inducibility in keratinocytes all suggest that this peptide and its precursor (hCAP-18) may protect skin and other tissues from bacterial intrusions and LPS-induced toxicity. The potent activity of LL-37 against P. aeruginosa, including mucoid and antibiotic-resistant strains, suggests that it or related molecules might have utility as topical bronchopulmonary microbicides in cystic fibrosis.  相似文献   

16.
BACKGROUND: Many pathogenic bacteria secrete iron-chelating siderophores as virulence factors in the iron-limiting environments of their vertebrate hosts to compete for ferric iron. Mycobacterium tuberculosis mycobactins are mixed polyketide/nonribosomal peptides that contain a hydroxyaryloxazoline cap and two N-hydroxyamides that together create a high-affinity site for ferric ion. The mycobactin structure is analogous to that of the yersiniabactin and vibriobactin siderophores from the bacteria that cause plague and cholera, respectively. RESULTS: A ten-gene cluster spanning 24 kilobases of the M. tuberculosis genome, designated mbtA-J, contains the core components necessary for mycobactin biogenesis. The gene products MbtB, MbtE and MbtF are proposed to be peptide synthetases, MbtC and MbtD polyketide synthases, MbtI an isochorismate synthase that provides a salicylate activated by MbtA, and MbtG a required hydroxylase. An aryl carrier protein (ArCP) domain is encoded in mbtB, and is probably the site of siderophore chain initiation. Overproduction and purification of the mbtB ArCP domain and MbtA in Escherichia coli allowed validation of the mycobactin initiation hypothesis, as sequential action of PptT (a phosphopantetheinyl transferase) and MbtA (a salicyl-AMP ligase) resulted in the mbtB ArCP domain being activated as salicyl-S-ArCP. CONCLUSIONS: Mycobactins are produced in M. tuberculosis using a polyketide synthase/nonribosomal peptide synthetase strategy. The mycobactin gene cluster has organizational homologies to the yersiniabactin and enterobactin synthetase genes. Enzymatic targets for inhibitor design and therapeutic intervention are suggested by the similar ferric-ion ligation strategies used in the siderophores from Mycobacteria, Yersinia and E. coli pathogens.  相似文献   

17.
Vibrio cholerae was found to have two sets of genes encoding TonB, ExbB and ExbD proteins. The first set (tonB1, exbB1, exbD1) was obtained by complementation of a V. cholerae tonB mutant. In the mutant, a plasmid containing these genes permitted transport via the known V. cholerae high-affinity iron transport systems, including uptake of haem, vibriobactin and ferrichrome. When chromosomal mutations in exbB1 or exbD1 were introduced into a wild-type V. cholerae background, no defect in iron transport was noted, indicating the existence of additional genes that can complement the defect in the wild-type background. Another region of the V. cholerae chromosome was cloned that encoded a second functional TonB/Exb system (tonB2, exbB2, exbD2). A chromosomal mutation in exbB2 also failed to exhibit a defect in iron transport, but a V. cholerae strain that had chromosomal mutations in both the exbB1 and exbB2 genes displayed a mutant phenotype similar to that of an Escherichia coli tonB mutant. The genes encoding TonB1, ExbB1, ExbD1 were part of an operon that included three haem transport genes (hutBCD), and all six genes appeared to be expressed from a single Fur-regulated promoter upstream of tonB1. A plasmid containing all six genes permitted utilization of haem by an E. coli strain expressing the V. cholerae haem receptor, HutA. Analysis of the hut genes indicated that hutBCD, which are predicted to encode a periplasmic binding protein (HutB) and cytoplasmic membrane permease (HutC and HutD), were required to reconstitute the V. cholerae haem transport system in E. coli. In V. cholerae, the presence of hutBCD stimulated growth when haemin was the iron source, but these genes were not essential for haemin utilization in V. cholerae.  相似文献   

18.
A genomic library of Campylobacter jejuni (NCTC 11351) was used to identify genes which could confer a hemolytic phenotype to Escherichia coli. Accordingly, when transformants were screened on blood plates, hemolytic colonies appeared at a frequency of 3 x 10(-4). The gene conferring the hemolytic activity was identified by subcloning and was found to be responsible for the phenotype of all hemolytic transformants isolated. The open reading frame conferring this activity encodes a protein of 36,244 Da with a typical endopeptidase type II leader sequence. The protein is modified with palmitic acid when it is processed in E. coli, confirming that it is a typical lipoprotein. The deduced gene product of 329 amino acids has significant homology to the group of solute binding proteins from periplasmic-binding-protein-dependent transport systems for ferric siderophores, including the FatB protein from Vibrio anguillarium and the FhuD protein from Bacillus subtilis. In particular, the protein contained the signature sequence for siderophore-binding proteins, suggesting that the protein may be the siderophore-binding protein component of an iron acquisition system of C. jejuni.  相似文献   

19.
We report the analysis of three open reading frames of Salmonella typhimurium LT2 which we identified as rfaF, the structural gene for ADP-heptose:LPS heptosyltransferase II; rfaD, the structural gene for ADP-L-glycero-D-manno-heptose-6-epimerase; and part of kbl, the structural gene for 2-amino-3-ketobutyrate CoA ligase. A plasmid carrying rfaF complements an rfaF mutant of S. typhimurium; rfaD and kbl are homologous to and in the same location as the equivalent genes in Escherichia coli K-12. The RfaF (heptosyl transferase II) protein shares regions of amino acid homology with RfaC (heptosyltransferase I), RfaQ (postulated to be heptosyltransferase III), and KdtA (ketodeoxyoctonate transferase), suggesting that these regions function in heptose binding. E. coli contains a block of DNA of about 1,200 bp between kbl and rfaD which is missing from S. typhimurium. This DNA includes yibB, which is an open reading frame of unknown function, and two promoters upstream of rfaD (P3, a heat-shock promoter, and P2). Both S. typhimurium and E. coli rfaD genes share a normal consensus promoter (P1). We postulate that the yibB segment is an insertion into the line leading to E. coli from the common ancestor of the two genera, though it could be a deletion from the line leading to S. typhimurium. The G+C content of the rfaLKZYJI genes of both S. typhimurium LT2 and E. coli K-12 is about 35%, much lower than the average of enteric bacteria; if this low G+C content is due to lateral transfer from a source of low G+C content, it must have occurred prior to evolutionary divergence of the two genera.  相似文献   

20.
Vitamin B12 (CN-Cbl) and iron-siderophore complexes are transported into Escherichia coli in two energy-dependent steps. The first step is mediated by substrate-specific outer membrane transport proteins and the energy-coupling TonB protein complex, and the second step uses separate periplasmic permeases for transport across the cytoplasmic membrane. Genetic and biochemical evidence suggests that the TonB-dependent outer membrane transporters contact TonB directly, and thus they might compete for limiting amounts of functional TonB. The transport of iron-siderophore complexes, such as ferrichrome, causes a partial decrease in the rate of CN-Cbl transport. Although CN-Cbl uptake does not inhibit ferrichrome uptake in wild-type cells, in which the amount of the outer membrane ferrichrome transporter FhuA far exceeds that of the cobalamin transporter BtuB, CN-Cbl does inhibit ferrichrome uptake when BtuB is overexpressed from a multicopy plasmid. This inhibition by CN-Cbl is increased when the expression of FhuA and TonB is repressed by growth with excess iron and is eliminated when BtuB synthesis is repressed by CN-Cbl. The mutual inhibition of CN-Cbl and ferrichrome uptake is overcome by increased expression of TonB. Additional evidence for interaction of the Cbl and iron transport systems is provided by the strong stimulation of the BtuB- and TonB-dependent transport of CN-Cbl into a nonexchangeable, presumably cytoplasmic pool by preincubation of cells with the iron(II) chelator 2,2'-dipyridyl. Other metal ion chelators inhibited CN-Cbl uptake across the outer membrane. Although the effects of chelators are multiple and complex, they indicate competition or interaction among TonB-dependent transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号