首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The luminescence properties of Tm3+ in La1−χTmχTa7O19 solid solutions were examined systematically. The substitution of Tm3+ for La3+ was carried out by a decomposition reaction of nitrates involving the corresponding constituents at 1200 °C in air. X-Ray diffraction patterns of the solid solutions indicated that the crystal structure consisted of a network of (La1−χ3+Tmχstaggered|3+, Ta5+)—O2− polyhedra interstratified with a double layer of Ta5+—O2− polyhedra. According to the excitation and emission spectra, the most intense emission was found near 460 nm and quenched above χ=0.14 in La1−χTmχTa7O19. Also, lifetime results verified that the emission could be assigned not to the transition 1G4 å 3H6, but to the transition 1D2 å3H4. Upon cathode ray excitation some emissions of Tm3+ were superimposed by a broad emission due to the clusters of Ta5+—O2− polyhedra. As a result, a low dimensional arrangement of Tm3+ was much more preferable for getting intense emission because it reduced the energy migration between Tm3+ ions.  相似文献   

2.
The La0.85Sr0.15Cr0.95Ni0.02Co0.02O3 (LSC) interconnect materials for solid oxide fuel cells (SOFCs) were synthesized by EDTA–citrate complexing method. Thermal decomposition behavior of the gel, phase formation and morphology of LSC powders were characterized by thermogravimetry/differential thermal (DSC/TG) analysis, X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. It appeared that lower pH value (pH 4.9) of the precursor solution resulted in a transient liquid phase, SrCrO4, in the calcined LSC powder. The sintering characteristics, electrical conductivity and thermal expansion properties of sintered bars were investigated. La0.85Sr0.15Cr0.95Ni0.02Co0.02O3 prepared in the condition of pH 4.9 showed an electrical conductivity of 15.6 S cm−1 at 800 °C and a thermal expansion coefficient (TEC) of 10.8 × 10−6 K−1 (20–900 °C), which is suitable for use as interconnect materials for SOFCs.  相似文献   

3.
This paper presents preparation, optical absorption and photoluminescence properties of luminescent materials consisting of Ln2−xTbx(WO4)3 [where Ln = Gd(III) or La(III)] incorporated into silica xerogel. Photoluminescence behaviour of the salt in the rigid matrix was studied by the luminescence spectroscopy. The excitation spectra of the system Ln2−xTbx(WO4)3 show an intense broad band with a maximum placed at about 240 nm. This band is attributed to ligand–metal charge transfer (LMCT) inside the tungstate group. On the other hand, Tb3+ ion exhibits its characteristic emission in the material. Owing to energy transfer from the excited tungstate groups to the Tb3+ ions the emission intensity is improved. The energy transfer from WO42− group to Tb(III) ion is particularly effective for such dopants as Gd0.4Tb1.6(WO4)3 or La0.8Tb1.2(WO4)3 incorporated into SiO2 xerogel. Concentration of the emission quenchers such as water molecules and OH groups was reduced by thermal treatment. The high emission intensity and easy preparation of these systems make them potential candidates for application as luminescent materials.  相似文献   

4.
Oriented single crystals of RFe3(BO3)4, with R=La or Nd, have been studied by Raman spectroscopy. Spectra with the relevant polarization configurations have been recorded in order to obtain the symmetry of the observed phonons. The factor group analysis and the correlation with the free (BO3)3− ion are done in order to identify most of the phonons associated with the two different types of (BO3)3− ion present in the crystal. The number and symmetries of the optical Raman active modes are 7A1+19E, among which 4A1+8E can be assigned as mostly due to (BO3)3− vibrations. 7A1+18E modes were observed.

The highest energy peaks have been assigned to the regular planar (BO3)3− and to the three irregular (BO3)3− groups. The two lowest energy peaks of A1 symmetry (around 180 and 300 cm−1) are very probably related to the BO3 rotatory mode and to Fe displacements. R ions do not participate in A1 symmetry modes. The E mode around 90 cm−1 (the lowest frequency mode) is probably due to the R ions which have the longest bonds and are the heaviest ions.  相似文献   


5.
Li(CoxNi1 − x)O2 (0 ≤ x ≤ 1) cathode powders were prepared by solid state reaction method using Co3O4/NiO precursor powders obtained by spray pyrolysis. The effect of the ratios of cobalt and nickel components on the characteristics of Co3O4/NiO precursor and Li(CoxNi1 − x)O2 cathode powders were investigated. The Co3O4/NiO precursor powders with the ratios of cobalt and nickel components as 1/0, 0.75/0.25 and 0.5/0.5 had submicron size and regular morphologies. On the other hand, the Co3O4/NiO powders with the high contents of nickel component had aggregated morphologies of submicron size primary powders. The fine-sized precursor powders formed the fine-sized LiCoO2 and Li(Co0.75Ni0.25)O2 cathode powders by solid state reaction with LiOH powders. However, the high contents of the nickel component of the Co3O4/NiO precursor powders formed the Li(CoxNi1 − x)O2 (0 ≤ x ≤ 0.5) cathode powders with aggregated morphologies and large sizes. The discharge capacities of the powders increased with increasing the nickel content into the Li(CoxNi1 − x)O2 cathode powders up to 188 mAh/g.  相似文献   

6.
The binary phosphate K4Ce2P4O15 was prepared in the polycrystalline state in the solid state reaction of cerium oxide and potassium phosphate KPO3. The phosphate fragment of this compound appears in the form of two PO43− and one P2O74− anions occupying the sites of low symmetry. Electronic absorption, emission as well as infrared and Raman spectroscopic methods have been applied to characterise the properties and structure of the compound studied. Its electronic spectra agree with the Ce3+ ion spectroscopic characteristics. The 2F5/22F7/2 transition appears in the typical for this ion region: about 2000 cm−1. The multiplet structure of the spectrum suggests the existence of at least two crystallographic different sites of this ion in the unit cell. The absorption bands in the range 25000–45000 cm−1 have been assigned to the 4f1→5d1 transitions of the cerium ion and CT transition of the phosphate ligands. The vibrational spectra were discussed on the basis of correlation diagrams and factor group analysis.

The radiation-less mechanism of the return from the excited state to the ground state via CT states in the system studied is proposed.  相似文献   


7.
The enthalpies of solution of BaCmO3 and BaCfO3 in 1.00 mol dm−3 HClO4 were measured at 298.15 ± 0.05 K and p° = 101.325 kPa as −(345.3±4.7) and −(347.2 ± 1.9) kJ mol−1, respectively. The resulting standard molar enthalpies of formation, ΔfHm°(BaCmO3, cr) = −(1517.8 ± 7.1) kJ mol−1 and ΔfHm°(BaCfO3, cr) = −(1477.9 ± 5.6) kJ mol−1, together with other corresponding experimental values for several lanthanide, actinide and transition metal complex oxides with barium and strontium, are used to estimate the molar enthalpies of formation of a number of homologous actinide compounds. The present results also provide additional information on the standard molar enthalpy of formation of CfO2 and on the Cf4+/Cf3+ standard potential.  相似文献   

8.
Materials with the general formula MxZr2(PO4)3 are known to possess low coefficients of thermal expansion (CTE). The present work investigates the thermal properties of new composite materials issued from the decomposition at high temperature of Ln1/3Zr2(PO4)3 (Ln=La, Gd). The decomposition process was studied and showed that the resulting powder was a LnPO4, Zr2P2O9 and ZrO2 mixture. Composite materials made of that mixture were sintered and characterized. The effect of sintering aids such as ZnO was considered. Final densities of the composites were about 90% of theoretical density and these materials presented low CTE in the 10−6 °C−1 range.  相似文献   

9.
Lithium ion conductors, Li3−2x(Sc1−xZrx)2(PO4)3 (0 x 0.3), were prepared by a solid-state reaction. TG–DTA analysis indicated no phase transition in the samples with x superior to 0.05. X-ray powder diffraction analysis of these samples clearly showed the stabilization of a superionic conduction phase at room temperature with an orthorhombic system Pbcn. The highest conductivity was observed for the sample with x=0.05, and ascribed to the stabilization of the superionic conduction phase and the introduction of vacancies on the Li+ sites by substituting Zr4+ for Sc3.  相似文献   

10.
Europium doped phosphors Ca3La3(BO3)5 were first synthesized by a sol–gel process technique. The reaction temperature of the sol–gel process was 300 °C lower than that of the solid-state reaction and the reaction time of the sol–gel process was shorter. The photoluminescence properties of Eu3+ doped Ca3La3(BO3)5 indicated that the phosphors exhibited a strong luminescence of 5D07F2 transition at 612 nm under the excitation at 237 nm. The emission intensity of the phosphors prepared by the sol–gel process was higher than those prepared by the solid-state reaction. The relationship between optical properties and morphologies were studied. In particular, Li+ ion doping effectively enhanced the luminescent properties of the Eu3+ doped Ca3La3(BO3)5 phosphors. The highest brightness was observed in the phosphor Ca3La2.82Eu0.1Li0.08B5O15−δ prepared by the sol–gel process.  相似文献   

11.
Kinetics for lithium ion transfers in the fast ionic conductor Li2.8(V0.9Ge0.1)2(PO4)3 prepared by solid-state reaction method has been studied by electrochemical impedance spectroscopy (EIS) at various temperatures and the results were correlated with observed cathodic behavior. The specific conductivities of Lix(V0.9Ge0.1)2(PO4)3 (x = 0.9–2.8) versus temperatures were analyzed from blocking-electrodes by Wagner's polarization method and the activation energy was calculated. It was observed that electronic conductivities of Lix(V0.9Ge0.1)2(PO4)3 increased with lithium contents in the materials. The compounds show a reversible capacity of 131 mAh g−1 at low current density (13 mA g−1). Modeling the EIS data with equivalent circuit approach enabled the determination of charge transfer and surface film resistances. The Li ion diffusion coefficient (DLi+) versus voltage plot shows three valleys during the first charge cycle coinciding with the irreversible plateau of the voltage versus lithium content profiles reflecting the irreversible phase change in the compound. The obtained DLi+ from EIS varies within 10−8 to 10−7 cm2 s−1, so Li2.8(V0.9Ge0.1)2(PO4)3 shows excellent chemical diffusion performance.  相似文献   

12.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

13.
Barium zirconate (BaZrO3) nanoparticles synthesized by a self-sustained single-step combustion process is reported in this paper. In this process, a phase pure nanopowder of BaZrO3 has been obtained by the combustion of an aqueous solution containing Ba and Zr ions by using citric acid as complexing agent and liquor ammonia as fuel, thus giving rise to phase pure BaZrO3 nanopowder in a single-step combustion without any further calcination. The X-ray diffraction studies have shown that the as-prepared powder was single phase, crystalline, and has a cubic perovskite structure (ABO3) with a lattice constant a = 4.19 Å. The average particle size calculated from FWHM is 30 nm. The phase purity of BaZrO3 nanopowder has been examined using differential thermal analysis (DTA), thermo gravimetric analysis (TGA) and Fourier transform of infrared spectroscopy (FTIR). The transmission electron microscopic investigation has shown that the particle size of the as-prepared powder was in the range 30–50 nm with a mean size of 40 nm. The nano BaZrO3 has been sintered to a density of 99% of the theoretical density at 1650 °C in 2 h without the use of any sintering aids. The morphology of the sintered pellets has been studied with scanning electron microscopy (SEM). The dielectric constant (r) and loss factor (tan δ) values obtained at 10 MHz for a well-sintered barium zirconate pellet has been found to be 32.2 and 1 × 10−4, respectively, at room temperature.  相似文献   

14.
Nanosized Gd1.92−xyZnxLiyEu0.08O3−δ phosphor was fabricated by combustion synthesis. The effect of Zn2+ and Li+ ions on the crystallization behavior, morphology, and luminescence property of Gd2O3:Eu3+ was investigated. The results indicated that incorporation of Zn2+ and Li+ ions into Gd2O3:Eu3+ nanoparticles (NPs) could lead to a remarkable increase of photoluminescence or X-ray excited luminescence, and the intensity at 612 nm was increased by a factor of 7.1 or 21.5 in comparison with that of undoped sample. The enhanced luminescence was regarded as the results of the creation of oxygen vacancies due to the Gd3+ sites occupied by Li+ ions, the alteration of the crystal field surrounding the activator Eu3+ ions owing to the incorporation Zn2+ ions into interstitial sites, and the flux effect of Zn2+ and Li+ ions. The Zn- and Li-codoped Gd2O3:Eu3+ phosphor with highly enhanced luminescence is very encouraging for applications in high-resolution display devices.  相似文献   

15.
Without Sr addition, the sintered La2O3 and CuO powder mixture in a mole ratio of 1:2 formed K2NiF4-structured La2CuO4 with excess CuO. When 15% of strontium was added, La2CuO4 transformed into the single perovskite La1−xSrxCuO2.5−δ phase with orthorhombic structure. As the strontium addition increased to 20%, the perovskite lattice changed from orthorhombic to tetragonal. These phase transitions may be attributed to the enhanced oxidation of the divalent cupper ions (Cu2+) to trivalent ones (Cu3+) by the strontium addition. Based on the electroneutrality in an ABO3 perovskite lattice, a divalent cation is unstable in the B-site cation sub-lattice when the A-site is occupied by a trivalent cation such as La3+. As strontium was added into the A-site cation sub-lattice, the oxidation of Cu2+ ion into trivalent Cu3+ ion was enhanced. The increase of Cu3+ concentration strengthened the electrostatic bonding (ESB) of copper ions with their neighboring anions. Consequently, the symmetrical tetragonal Sr-doped lanthanum copper oxide was obtained.  相似文献   

16.
Crystals of Ba3NaRu2O9−δ (δ≈0.5) and Ba3(Na, R)Ru2O9−δ (R=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) were grown by an electrochemical method, and their crystallographic, magnetic, and electric properties were studied. All crystals have a hexagonal structure of space group P63mmc. Ba3NaRu2O9−δ and Ba3(Na, R)Ru2O9−δ (except Ce) have a negative asymptotic Curie temperature suggesting the existence of an antiferromagnetic order; however, they are paramagnetic at temperatures above 1.7 K. Ba3NaRu2O9−δ has an effective magnetic moment Peff of 0.91 μB, while Peff of Ba3(Na, R)Ru2O9−δ (except Ce) reflects the large free-ion moment of the rare earth ions. Ba3(Na, Ce)Ru2O9−δ shows peculiar magnetic behavior that differs from the magnetism of other Ba3(Na, R)Ru2O9−δ crystals. The resistivity of all crystals exhibits an activation-type temperature dependence with an activation energy in the range of 0.10.2 eV.  相似文献   

17.
The isotropic electron paramagnetic resonance (EPR) spectra of powders with Pr4+ doped in BaMO3 (M=Ce, Zr, Sn) were measured at 4.2 K. A very large hyperfine interaction with the 141Pr nucleus was observed. The results were analyzed based on the weak field approximation, and the g values and hyperfine coupling constants A were obtained. The measured g values are much smaller than |−10/7|, showing that the crystal field effect on the behavior of a 4f electron is large. The value of |g| decreases from 0.741 (Pr4+–BaCeO3) to 0.583 (Pr4+–BaSnO3), which is caused by the increase of the crystal field due to the shrinking of the lattice. In contrast, the hyperfine coupling constants are almost constant: A=0.060(1) cm−1. The anisotropic EPR spectra were measured for the case of Pr4+–SrCeO3, which indicates that the octahedral array of oxygen ions about Pr4+ is considerably distorted for this system.  相似文献   

18.
The citrate method was used to synthesize Sr(Ce1−xZrx)0.95Yb0.05O3−δ (x = 0.1, 0.2, 0.3, 0.4) and to avoid the drawbacks of the conventional solid state reaction method. The products were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe X-ray microanalyzer (EPMA). The results indicate that the citrate method is an advantageous route in producing Sr(Ce1−xZrx)0.95Yb0.05O3−δ materials. Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ powders are composed of nanoscaled crystallites with the average grain size in the range of 60–70 nm. Single phase is confirmed over the whole x range. In addition, chemical stability against CO2 and electrical conduction behavior of the sintered Sr(Ce1−xZrx)0.95Yb0.05O3−δ ceramics were investigated. The chemical stability of the ceramics against CO2 is certified to increase with the increase in zirconium content. Impedance spectroscopy was used to study the electrical conduction behavior of Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ ceramic.  相似文献   

19.
The H-NMR1-NMR measurements were carried out on the organic conductor, (BEDT-TTF)3CuBr4, where strong coupling between π and 3d electrons are expected. The H1 spin-lattice relaxation rate, T1−1, was large about 20 sec−1 and almost temperature independent above 60 K indicating the effect of localized magnetic moments. Anomalies at the structural transition (60 K) was small. An antiferromagnetic transition was confirmed: The magnitude of the moment at Cu site was estimated as 0.6-0.7 μB. The moment at the Cu site was found to survive in the metallic state under pressure.  相似文献   

20.
The extraction equilibrium relations of neodymium and samarium were studied in the system HCl (1.0 mol dm−3)-di-(2-ethylhexyl) phosphorie acid (HDEHP), for a wide range of neodymium and samarium concentration (0.02-1.20 mol dm−3), mole fraction (Xi=0.005-0.995) and acidity (CH+=0.27-1.06 mol dm−3). A relatively simple, high precision model for the distribution ratio Di was established by correlating the experimental data with a progressive regression program Di=exp(a1+a2I+a3CH++a4Xi)Ia5Xia6 In CH+ + a7 In(1-Xi)

The extraction behaviour of the neodymium-samarium binary system was studied using the above model. The study of acid equilibrium shows that the extraction proceeds according to the cation exchange reaction within this range of experimental parameters. The neodymium and samarium concentrations in the organic phase increase rapidly and reach a maximum, and then decrease as the aqueous concentration increases; the maximum concentration appears at about 0.3-0.4 mol dm−3 of aqueous neodymium and samarium concentration. The variation of separation factors, βSm/Nd, was also studied with the change in aqueous acidity, rare earth concentration and mole fraction, βSm/Nd vary between 6.5 and 10.2 and the average value is 8.77.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号