首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There has been a lot of research works considering the resource allocation of the downlink multihop orthogonal frequency division multiplexing systems. However, due to the distributed nature of the uplink power constraints, the resource allocation in the uplink multihop systems, where multiple mobile stations transmit to one base station with the aid of one or many relay stations, has much difference and has not been well investigated so far. In this paper, we originally study the joint subcarrier and power allocation problem for the uplink dual‐hop transmission with the aim to maximize the system transmit rate. The resource allocation problem is approximated to be a concave maximization problem. By using mathematical decomposition techniques, the problem is first decoupled and solved by the proposed near‐optimal method, which has low‐computation complexity. Then, our algorithm is extended to the case with subcarrier matching on the dual hops. Numerical results show that our proposed algorithm improves the system transmission rate. Compared with the equal power allocation schemes, our algorithm can achieve significant gain in system transmit rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Intercell interference coordination in Third Generation Partnership Project long‐term evolution‐advanced system has received much attention both from the academia and the standardization communities. Moreover, the network architecture of long‐term evolution‐advanced system is modified to take into account coordinated transmission. In this article, we study the dynamic resource allocation problem and potential game theory and propose a multicell adaptive distributed resource allocation algorithm based on potential game. The allocation process is divided into two steps; subchannel is allocated first, and then, transmitted power is optimized dynamically according to a novel pricing factor. Besides, existence and uniqueness of Nash equilibrium of the proposed game model are assured. As a result, intercell interference is well coordinated. Simulation results show that transmitted power is saved efficiently and system fairness is improved to a large extent, accompanied with good performance gain of total and cell‐edge throughputs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Multiuser multiple‐input multiple‐output orthogonal frequency division multiple access (MIMO‐OFDMA) is considered as the practical method to attain the capacity promised by multiple antennas in the downlink direction. However, the joint calculation of precoding/beamforming and resource allocation required by the optimal algorithms is computationally prohibitive. This paper proposes computationally efficient resource allocation algorithms that can be invoked after the precoding and beamforming operations. To support stringent and diverse quality of service requirements, previous works have shown that the resource allocation algorithm must be able to guarantee a specific data rate to each user. The constraint matrix defined by the resource allocation problem with these data rate constraints provides a special structure that lends to efficient solution of the problem. On the basis of the standard graph theory and the Lagrangian relaxation, we develop an optimal resource allocation algorithm that exploits this structure to reduce the required execution time. Moreover, a lower‐complexity suboptimal algorithm is introduced. Extensive simulations are conducted to evaluate the computational and system‐level performance. It is shown that the proposed resource allocation algorithms attain the optimal solution at a much lower computational overhead compared with general‐purpose optimization algorithms used by previous MIMO‐OFDMA resource allocation approaches. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Because the orthogonal frequency division multiple access physical resource available for scheduling in Worldwide Interoperability for Microwave Access networks is frame by frame, an uplink scheduler located at the base station must efficiently allocate available resources to the subscriber stations in response to constant or bursty data traffic on a per‐frame basis. Available resources for real‐time and nonreal‐time traffics, called frame‐based adaptive bandwidth allocation and minimum guarantee and weight‐based bandwidth allocation, respectively, are proposed in this paper. Moreover, both short‐term and long‐term bandwidth predictions for traffic are incorporated so that the long‐term bandwidth prediction can have sustainable throughput requirement, and the short‐term bandwidth prediction can meet the objectives of low delay and jitter. For the scenarios studied, it shows that system performance of the proposed algorithm is better than the hybrid (earliest deadline first + weighted fair queuing + FIFO) algorithm in terms of packet delay, jitter, throughput, and fairness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we study joint resource allocation and adaptive modulation in single‐carrier frequency‐division multiple access systems, which is adopted as the multiple access scheme for the uplink in the 3GPP Long Term Evolution standard. We formulate an adaptive modulation and sum‐cost minimization (JAMSCmin) problem. Unlike orthogonal frequency‐division multiple access, in addition to the restriction of allocating a subchannel to one user at most, the multiple subchannels allocated to a user in single‐carrier frequency‐division multiple access systems should be consecutive as well. This renders the resource allocation problem prohibitively difficult and the standard optimization tools (e.g., Lagrange dual approach widely used for orthogonal frequency‐division multiple access, etc.) cannot help towards its optimal solution. We propose a novel optimization framework for the solution of this problem that is inspired from the recently developed canonical duality theory. We first formulate the optimization problem as binary‐integer programming (BIP) problem and then transform this BIP problem into continuous space canonical dual problem that is the concave maximization problem. Based on the solution of the canonical dual problem, we derive joint resource allocation and adaptive modulation algorithm, which has polynomial time complexity. We provide conditions under which the proposed algorithm is optimal. We compare the proposed algorithm with the existing algorithms in the literature. The results show a tremendous performance gain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross‐tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non‐cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two‐hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross‐tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.  相似文献   

7.
In this paper, resource allocation problem in orthogonal frequency division multiple access‐based cognitive radio (CR) systems to maintain minimum transmission rate constraints of CR users (CRUs) with the specified interference thresholds is investigated. Firstly, a single primary user (PU) CR system is considered, and a suboptimal resource allocation algorithm to maximize the sum transmission rate of all CRUs is proposed. Secondly, the single‐PU scenario is extended to multiple‐PU case, and an asymptotically optimal resource allocation algorithm is proposed using dual methods subject to constraints on both interference thresholds of PUs and total transmit power of all CRUs. Analysis and numerical results show that, in contrast to classical resource allocation algorithms, the proposed algorithm can achieve higher transmission rate and guarantee each CRU's minimum transmission rate in both scenarios. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
We analyze the performance of joint space‐frequency pre‐filtering and equalization techniques for downlink multi‐carrier code division multiple access in terms of average bit error rate performance. Several linear power allocation strategies combined with single‐user equalization schemes are compared with a joint pre‐filtering with an equal power constraint at the base station and maximal ratio combining at the mobile terminals. Our bit error rate analysis obtained in this paper facilitates predicting the performance of various space‐frequency pre‐filtering schemes without massive simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Introducing orthogonal frequency division multiplexing (OFDM) into cognitive radio (CR) can potentially increase the spectrum efficiency, but it also leads to further challenges for the resource allocation of CR networks. In OFDM‐based cognitive relay networks, two of the most significant research issues are subcarrier selection and power allocation. In this paper, a non‐cooperative game model is proposed to maximize the system throughput by jointly optimizing subcarrier selection and power allocation. First, taking the direct and relay links into consideration, an equivalent channel gain is presented to simplify the cooperative relay model into a non‐relay model. Then, a variational inequality method is utilized to prove the existence and uniqueness of the Nash equilibrium solution of the proposed non‐cooperative game. Moreover, to compute the solution of the game, a suboptimal algorithm based on the Lagrange function and distributed iterative water‐filling algorithm is proposed. The proposed algorithm can jointly optimize the process of subcarrier selection and power allocation. Finally, simulation results are shown to demonstrate the effectiveness of the proposed joint subcarrier selection and power allocation scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Rate adaptive downlink resource allocation in orthogonal frequency division multiple access system is a constraint optimization problem, which is to maximize the minimum data rate of the user subject to constraint that total power cannot exceed a given value. How to handle the constraint is a key issue for constrained optimization problem. Different with the available schemes on constraint handling, the proposed algorithm converts the constraint into an objective. Then, the resource allocation is combined into a multi‐objective optimization problem. An improved multi‐objective optimization algorithm based on artificial immune system is proposed to solve it. The simulation results show that, compared with previous schemes, the proposed algorithm performs remarkable improvement in sum capacity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The resource allocation problem for the downlink of orthogonal frequency‐division multiple access (OFDMA) wireless multicast systems is investigated. It is assumed that the base station consists of multiple antennas in a distributed antenna system (DAS), whereas each user is equipped with a single antenna. The multicasting technology is able to support several groups of users with flexible quality of service (QoS) requirements. The general mathematical formulation is provided, but achieving the optimal solution has a high computational cost. In our approach, the allocation unit is not the subcarrier, as in conventional OFDMA systems, but a set of contiguous subcarriers, which is called ‘chunk’. For practical implementation, a suboptimal but efficient algorithm is proposed in order to maximize the sum of the maximum attainable data rates of multicast groups of users, subject to total available power and proportional maximum attainable data rate constraints among multicast groups of users. Simulation and complexity analyses are provided to support the benefits of chunk‐based resource allocation to multicast OFDMA DASs, supporting that the proposed algorithm can be applied to latest‐generation wireless systems that provide QoS guarantees. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This article investigates resource allocation in multi-hop orthogonal frequency division multiplexing (OFDM) system with amplifying-and-forwarding relaying to maximize the end-to-end capacity. Most existing methods for multi-hop system focus on power allocation or subcarrier selection separately, but joint resource allocation is rarely considered due to the absence of effective interaction schemes. In this work, a novel joint resource allocation methodology is proposed based on Partheno genetic algorithm (PGA), which produces excellent subcarrier allocation set (referred to as individual in PGA) with higher capacity by evolution operator generation by generation. In addition, an adaptive power allocation is also designed to evaluate the fitness of PGA and further enhance the system capacity. Both theoretical analysis and simulated results show the effectiveness of the proposed joint strategy. It outperforms the traditional method by as much as 40% capacity improvement for 3-hop relaying system when system power is high, and obtains much more capacity enhancement percent under conditions of low system power.  相似文献   

13.
In long term evolution (LTE) uplink single carrier frequency division multiple access (SC-FDMA) system, the restriction that multiple resource blocks (RBs) allocated to a user should be adjacent, makes the resource allocation problem hard to solve. Moreover, with the practical constraint that perfect channel state information (CSI) cannot be obtained in time-varying channel, the resource allocation problem will become more difficult. In this paper, an efficient resource allocation algorithm is proposed in LTE uplink SC-FDMA system with imperfect CSI assumption. Firstly, the resource allocation problem is formulated as a mixed integer programming problem. Then an efficient algorithm based on discrete stochastic optimization is proposed to solve the problem. Finally, simulation results show that the proposed algorithm has desirable system performance.  相似文献   

14.
The problem of resources allocation in multiple‐input multiple‐output‐orthogonal frequency division multiplexing based cooperative cognitive radio networks is considered, in this paper. The cooperation strategy between the secondary users is decode‐and‐forward (DF) strategy. In order to obtain an optimal subcarrier pairing, relay selection and power allocation in the system, the dual decomposition technique is recruited. The optimal resource allocation is realized under the individual power constraints in source and relays so that the sum rate is maximized while the interference induced to the primary system is kept below a pre‐specified interference temperature limit. Moreover, because of the high computational complexity of the optimal approach, a suboptimal algorithm is further proposed. The jointly allocation of the resources in suboptimal algorithm is carried out taking into account the channel qualities, the DF cooperation strategy, the interference induced to the primary system and the individual power budgets. The performance of the different approaches and the impact of the constraint values and deploying multiple antennas at users are discussed through the numerical simulation results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies optimal resource allocation for multiple network‐coded two‐way relay in orthogonal frequency division multiplexing systems. All the two‐way relay nodes adopt amplify‐and‐forward and operate with analog network coding protocol. A joint optimization problem considering power allocation, relay selection, and subcarrier pairing to maximize the sum capacity under individual power constraints at each transmitter or total network power constraint is first formulated. By applying dual method, we provide a unified optimization framework to solve this problem. With this framework, we further propose three low‐complexity suboptimal algorithms. The complexity of the proposed optimal resource allocation (ORA) algorithm and three suboptimal algorithms are analyzed, and it is shown that the complexity of ORA is only a polynomial function of the number of subcarriers and relay nodes under both individual and total power constraints. Simulation results demonstrate that the proposed ORA scheme yields substantial performance improvement over a baseline scheme, and suboptimal algorithms can achieve a trade‐off between performance and complexity. The results also indicate that with the same total network transmit power, the performance of ORA under total power constraint can outperform that under individual power constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we study the adaptive resource allocation in multiuser orthogonal frequency division multiplexing (OFDM) systems. We try to maximize the sum capacity of an OFDM system with given transmission power budget, while meeting users' minimal rate requirements. Unlike other resource allocation schemes, which generally separate subchannel allocation and power distribution into independent procedures, our proposed algorithm implements joint subchannel and power allocation. Given a set of subchannels, the required power to satisfy a user's minimal rate constraint is calculated by water‐filling policy. Then, the user who requires the maximum power to meet the rate requirement has a priority to obtain an additional subchannel. The procedure continues until all subchannels are consumed, by which time the consumed power to meet all users' rate requirements is also worked out. Finally, the margin power is allocated among all subchannels in an optimal manner to maximize the sum capacity of the OFDM system. Simulation results show that our proposed algorithm performs better than other existing ones. The solution produced by our proposed algorithm is close to the upper bound, while its complexity is relatively lower compared with other methods, which makes it attractive for applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The paper investigates resource allocation via power control for inter‐cell interference (ICI) mitigation in an orthogonal frequency division multiple access‐based cellular network. The proposed scheme is featured by a novel subcarrier assignment mechanism at a central controller for ICI, which is further incorporated with an intelligent power control scheme. We formulate the system optimization task into a constrained optimization problem for maximizing accepted users' requirements. To improve the computation efficiency, a fast yet effective heuristic approach is introduced for divide and conquer. Simulation results demonstrate that the proposed resource allocation scheme can significantly improve the network capacity compared with a common approach by frequency reuse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Cognitive radio has been considered to be one of the main technologies to solve the problem of low spectrum utilization, while the adaptive allocation of network resource is one of the key technologies. A discrete polynary coding immune clonal selection (DPICS)‐based joint subcarrier and power allocation algorithm is proposed to solve the resource allocation problem in uplink cognitive OFDM networks. The novelties of DPICS include the following: A unique coding method is adopted to deal with multi‐value discrete variables. Compared with the traditional methods, the proposed method can acquire the shortest code. Meanwhile, the constraints of the subcarrier allocation are avoided. A heuristic mutation scheme is used to direct the mutation. Subcarriers are reallocated randomly to the secondary users with larger homotactic noise, which has a large probability to produce the optimal solution and improves the searching process. Subcarriers and power are allocated simultaneously, which is different with the traditional biphasic resource allocation algorithms. The biphasic resource allocation algorithms cannot acquire the subcarrier allocation result and power allocation result simultaneously, which makes the final result imprecise. The proposed algorithm avoids this situation and improves the accuracy of the final result. Compared with state‐of‐the‐art algorithms, the proposed algorithm is shown as effective by simulation results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Tailored for wireless local area networks, the present paper proposes a cross‐layer resource allocation scheme for multiple‐input multiple‐output orthogonal frequency‐division multiplexing systems. Our cross‐layer resource allocation scheme consists of three stages. Firstly, the condition of sharing the subchannel by more than one user is studied. Secondly, the subchannel allocation policy which depends on the data packets’ lengths and the admissible combination of users per subchannel is proposed. Finally, the bits and corresponding power are allocated to users based on a greedy algorithm and the data packets’ lengths. The analysis and simulation results demonstrate that our proposed scheme not only achieves significant improvement in system throughput and average packet delay compared with conventional schemes but also has low computational complexity.  相似文献   

20.
Due to the superiority in large bandwidth capacity and flexible resource allocation,orthogonal frequency division multiplexing passive optical network (OFDM-PON) has been recognized as one of the promising candidates for the next generation PON.There are many research works on the system architecture design of OFDM-PON.However,most of these works focused on the techniques of physical structure and signal transmission and less addressed the bandwidth allocation algorithms supporting the new types of system architecture.The bandwidth allocation in OFDM-PON,which is one of the key techniques to enable the access of multi-service,refers to the joint optimization of multi-dimensional resources in time domain,frequency domain and bits.A layered bandwidth allocation algorithm was proposed for multi-service in the enhanced system architecture of OFDM-PON,aiming at the efficient bandwidth resource utilization.Simulation results prove that the proposed bandwidth allocation algorithm outperforms the conventional algorithms without layered transmission significantly in terms of resource utilization and packet delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号