首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Gaussian and hyperbolic angle‐of‐arrival probability density functions are used to derive channel capacity of orthogonal frequency division multiplexing transmission employing diversity techniques and adaptive policies in cellular wireless fading environments. The intercarrier interference (ICI) power is quantified and given as a function of Doppler shift fd, symbol duration Ts, frequency correction ζ and propagation ratio τ. Two scattering distributions, which have been shown to closely fit experimental empirical data, are examined in this paper: (i) Gaussian and (ii) hyperbolic. A new signal‐to‐interference‐and‐noise ratio probability density function is derived as a function of the ICI power using diversity techniques and adaptive policies. From that, effects of fdTs, ζ and τ on channel capacity can be discussed. The main contribution of this work is to model ICI as a function of fd and symbol duration Ts. Two diversity techniques are considered: (i) maximal ratio combining and (ii) selective combining. Three adaptive policies are studied: (i) optimal rate adaptation, (ii) optimal rate and power adaptation and (iii) channel inversion with fixed rate. Closed‐form expressions and bounds on various channel capacity with orthogonal frequency division multiplexing transmission under different scenarios are derived. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we present a comprehensive performance analysis for multiple‐input multiple‐output (MIMO) systems with multiuser diversity over Rayleigh fading channels. We derive exact closed‐form expressions of the outage probability and the average bit error rate (BER) for different MIMO schemes, including the selective combining (SC), maximum ratio combining (MRC) and space‐time block codes (STBC). We also provide the explicit upper bounds on the BER performance. Finally, the mathematical formalism is verified by numeric results that study the interaction between the antenna diversity and the multiuser diversity. It is observed that the system performance is deteriorated as the number of transmit antennas increases in multiuser scenario, which is unlike the case in single‐user systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
On the basis of a mixture of the selection combining and switch‐and‐stay combining schemes, the enhanced switch combining (ESC) scheme is proposed for antenna diversity over multiple correlated Nakagami‐m fading channels, where a switch window with upper and lower switch thresholds are used. Compared with the existing select‐and‐stay combining or switch with post‐examining, the ESC scheme reduces simultaneous multiantenna observations and hence saves processing time and energy from multibranch observations, while achieving matched receiver performance. Thus, ESC also has better performance than switch‐and‐examine combining (SEC). To assess the reduction of simultaneous observations, a dual‐observation rate is defined. Moreover, the ESC unifies some well‐known switch‐based combining schemes (for example selection combining, switch‐and‐stay combining, or SEC) in the sense that, by adjusting switch thresholds, these combining schemes become different special cases of ESC. The CDF, PDF, and moment generating function of the combined signal‐to‐noise ratio for ESC are derived for general fading channels. Then, the outage probability and the average BER of different binary modulations over correlated Nakagami‐m fading channels are evaluated. Numerical results from analysis and simulation are presented to demonstrate ESC performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Multiuser diversity (MUD) cooperative wireless networks combine the features of the MIMO systems without confronting the physical layer constraints by providing multiple copies of the transmitted signal from the source to the destination with the help of the relay node. Cooperative wireless networks have attracted the full attention in the last few years and are implemented widely in many wireless communication systems to adapt for the fading impairments, provide higher data rates, and improve the performance of the wireless communication systems. In this paper, we present an informative study for the reason of evaluating the performance of the MUD in the multiuser two‐hop cooperative multi‐relay networks using maximal ratio combining. Furthermore, we derive tight closed‐form expressions of outage probability and symbol error probability for the amplify‐and‐forward and fixed decode‐and‐forward protocols with the MUD. Additionally, we conduct a simulation study to show to what extent our analytical and simulation results agree with each other. It is worthy to mention that our analytical and simulation results agree fairly with each other under high average signal‐to‐noise ratio, whereas they show that our proposed system with multiple relays provides significant improvements over those previously proposed systems having only one relay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.  相似文献   

6.
Mobile‐to‐mobile (M‐to‐M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M‐to‐M multiple‐input multiple‐output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double‐correlated Rayleigh‐and‐Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three‐dimensional (3D) M‐to‐M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal‐to‐noise ratio per receive antenna in closed‐form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the xy plane, angle between the xy plane and the antenna array orientation, and degree of scattering in the xy plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In circular scattering environments, novel location techniques with only two base stations (BSs) are proposed in this paper. The proposed techniques estimate the true or line‐of‐sight ranges and angle based on non‐line‐of‐sight range and angle measurements. Three new variables are introduced when range measurements and angle measurement are available from two BSs and the serving BS, respectively. Bounds and relationships between the three variables are extracted from the geometry of the cell layout with the unknown and known scattering radius conditions, respectively. Our aim is to obtain the estimation of three new variables and then the hybrid line of position technique with the adjusted ranges, and angle is utilized to obtain the position estimation of a mobile station. In order to obtain the estimation of three new variables, a new nonlinear objective function is built to form the constrained nonlinear optimization and solved by the existing optimization algorithms. However, because of the nonconvex objective function, the optimization algorithm may converge to the local optimum and lead to bad performance. Thus, a heuristic search algorithm is proposed by averaging all the potential point. Simulation results show that the proposed techniques outperform conventional hybrid techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the authors derive symbol error probability (SEP) expressions for coherent M‐ary frequency shift keying (MFSK) modulation schemes in multipath fading channels. The multipath or small‐scale fading process is assumed to be slow and frequency non‐selective. In addition, the channel is also subjected to the usual degradation caused by the additive white Gaussian noise (AWGN). Different small‐scale fading statistics such as Rayleigh, Rician (Nakagami‐n), Hoyt (Nakagami‐q), and Nakagami‐m have been considered to portray diverse wireless environments. Further, to mitigate fading effects through space diversity, the receiver front‐end is assumed to be equipped with multiple antennas. Independent and identically distributed (IID) as well as uncorrelated signal replicas received through all these antennas are combined with a linear combiner before successive demodulation. As the detection is coherent in nature and thus involves phase estimation, optimum phase‐coherent combining algorithms, such as predetection maximal ratio combining (MRC), may be used without any added complexity to the receiver. In the current text, utilizing the alternate expressions for integer powers (1≤n≤4) of Gaussian Q function, SEP values of coherent MFSK are obtained through moment generating function (MGF) approach for all the fading models (with or without MRC diversity) described above. The derived end expressions are composed of finite range integrals, which can be numerically computed with ease, dispenses with the need of individual expressions for different M, and gives exact values up to M=5. When the constellation size becomes bigger (M≥6), the same SEP expressions provide a quite realistic approximation, much tighter than the bounds found in previous literatures. Error probabilities are graphically displayed for each fading model with different values of constellation size M, diversity order L, and for corresponding fading parameters (K, q, or m). To validate the proposed approximation method extensive Monte‐Carlo simulations were also performed, which show a close match with the analytical results deduced in the paper. Both these theoretical and simulation results offer valuable insight to assess the efficacy of relatively less studied coherent MFSK in the context of the optimum modulation choice in wireless communication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we investigate the analytical performance of the multiple‐input multiple‐output system (MIMO) with orthogonal space‐time block codes (STBCs) subject to Weibull fading channels (WFC). Space‐time block code technique provides an efficient pattern for wireless transmission over various fading channels using multiple transmit antennas. Two approximating methods of the sum of independent Weibull random variables are studied. For each approach, we derive accurate approximate expressions for several performance metrics of MIMO‐STBC system operating under independent and nonidentical WFC. The proposed approximations are expressed in terms of 2 generalized hypergeometric functions, namely, Fox's H and Meijer's G functions. All the derived approximate expressions prove high accuracy, while compared with the simulation results established via Monte Carlo method and Kolmogorov‐Smirnov test as well. Although the 2 approaches have approximately the same accuracy, the second method approximate expressions are much less complex than those of the first method.  相似文献   

10.
A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.  相似文献   

11.
In this paper, we consider switch‐and‐stay combining (SSC) in two‐way relay systems with two amplify‐and‐forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or time‐division broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed‐form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signal‐to‐noise ratio. It is shown that SSC can achieve the full diversity order in two‐way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
With the advancement in wireless technology and portable devices, smart phones have become one of the belongings of human being. People share their data online, but it has limitations due to transmission range and mobility. Yet opportunistic mobile social network enables users to share data online even if there is no connected path between source and destination. The widespread use of mobile phones equipped with WiFi, Bluetooth, and several other components and contact opportunities among humans bridge the gap between internet available and nonavailable area. In this paper, we have proposed a new routing approach which utilizes both spatial and temporal attributes of user such as probability to meet a particular location and remaining intercontact time between two nodes to select better relay nodes. Generally, users visit different locations such as sports stadium and mall, with varying probability. Users with similar interest form group, and each user has different intercontact time with other users according to their point of interest and visiting pattern. By utilizing multiattributes, different forwarding strategies have been devised for both inter and intragroup routing. The proposed work “point of interest (PoI)‐based routing” is implemented in Opportunistic Network Environment simulator, and the performance is analysed in terms of delivery rate, latency, overhead, goodput, and energy consumed. The simulation results show that PoI diminishes 23% of overhead and yields 24% improvement in goodput over the state‐of‐the‐art protocol. Thus, the simulation results reveal that our proposed work provides the balance between routing performance and resource consumption.  相似文献   

13.
The use of wireless technology in industrial networks is becoming more popular because of its flexibility, reduction of cable cost, and deployment time. Providing an accurate model to study the most important parameters of these networks, the timeliness and reliability, is essential in assessing the network metrics and choosing proper protocol settings. The Institute of Electrical and Electronics Engineers (IEEE) 802.11 is a common and established wireless technology, and several analytical models have been proposed to assess its performance; however, most of them are accurate only for a limited network situation, especially data networks that have large packet payloads and are used at high signal to noise ratios, and cannot be applied to study the performance of industrial networks that have short packet lengths and are used in harsh and noisy environments. In this paper, a novel three‐dimensional discrete‐time Markov chain model has been proposed for the IEEE 802.11‐based industrial wireless networks using the distributed coordination function as the medium access control mechanism in the worst‐case saturated traffic. It considers both causes of the backoff freezing: busy channel and the successive interframe space waiting time. In this way, it provides a much more accurate estimation of the channel access and error probabilities, resulting in a more accurate network parameter calculation. Also, based on the proposed model, a comprehensive packet delay analysis, including average, jitter, and cumulative distribution function, has been provided for the near 100% reliable industrial scenario and error‐prone channel condition, which in comparison with similar pieces of work provides much more accurate results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号