首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a new CMOS receiver analog front‐end for short‐reach high‐speed optical communications, which compensates the limited product bandwidth length of 1‐mm step‐index plastic optical fiber (SI‐POF) channels (45 MHz · 100 m) and the required large‐diameter high‐capacitance Si PIN photodetector (0.8 mm–3 pF). The proposed architecture, formed by a transimpedance amplifier and a continuous‐time equalizer, has been designed in a standard 0.18‐µm CMOS process with a single supply voltage of only 1 V, targeting gigabit transmission for simple no‐return‐to‐zero modulation consuming less than 23 mW. Experimental results validate the approach for cost‐effective gigabit SI‐POF transmission. Comparative analysis with previously reported POF receivers has been carried out by introducing a useful figure of merit. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A low‐voltage input stage constructed from bulk‐driven PMOS transistors is proposed in this paper. It is based on a partial positive feedback and offers significant improvement of both input transconductance and noise performance compared with those achieved by the corresponding already published bulk‐driven structures. The proposed input stage offers also extended input common‐mode range under low supply voltage in relevant to a gate‐driven differential pair. A differential amplifier based on the proposed input stage is also designed, which includes an auxiliary amplifier for the output common‐mode voltage stabilization and a latch‐up protection circuitry. Both input stage and amplifier circuits were implemented with 1 V supply voltage using standard 0.35µm CMOS process, and their performance evaluation gave very promising results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A new 0.5‐V fully differential amplifier is proposed in this article. The structure incorporates a differential bulk‐driven voltage follower with conventional gate‐driven amplification stages. The bulk‐driven voltage follower presents differential gain equal to unity while suppressing the input common‐mode voltage. The amplifier operates at a supply voltage of less than 0.5 V, performing input transconductance almost equal to a gate transconductance and relatively high voltage gain without the need for gain boosting. The circuit was designed and simulated using a standard 0.18‐µm CMOS n‐well process. The low‐frequency gain of the amplifier was 56 dB, the unity gain bandwidth was approximately 3.2 MHz, the spot noise was 100 nV/√Hz at 100 kHz and the current consumption was 90 μΑ. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A new solution for an ultra low voltage bulk‐driven programmable gain amplifier (PGA) is described in the paper. While implemented in a standard n‐well 0.18‐µm complementary metal–oxide–semiconductor (CMOS) process, the circuit operates from 0.3 V supply, and its voltage gain can be regulated from 0 to 18 dB with 6‐dB steps. At minimum gain, the PGA offers nearly rail‐to‐rail input/output swing and the input referred thermal noise of 2.37 μV/Hz1/2, which results in a 63‐dB dynamic range (DR). Besides, the total power consumption is 96 nW, the signal bandwidth is 2.95 kHz at 5‐pF load capacitance and the third‐order input intercept point (IIP3) is 1.62 V. The circuit performance was simulated with LTspice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A new band‐gap reference (BGR) circuit employing sub‐threshold current is proposed for low‐voltage operations. By employing the fraction of VBE and the sub‐threshold current source, the proposed BGR circuit with chip area of 0.029mm2 was fabricated in the standard 0.18µm CMOS triple‐well technology. It generates reference voltage of 170 mV with power consumption of 2.4µW at supply voltage of 1 V. The agreement between simulation and measurement shows that the variations of reference voltage are 1.3 mV for temperatures from ?20 to 100°C, and 1.1 mV per volt for supply voltage from 0.95 to 2.5 V, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We present a low‐supply voltage (2V) low‐power consumption (500W) analogue phase‐locked loop (PLL), working at two low frequencies (1 and 10kHz), to be used in an integrated lock‐in amplifier. An externally settable control bit allows the switching operation between the two different frequencies. The circuit has been designed in a standard 0.6–m CMOS technology and differs from the standard analogue PLL architectures for the current mode implementation of both the loop filter and of the oscillator. Three different locked waveforms (sinusoidal, triangular, squared) can be obtained at the PLL output. Simulation results, obtained through the use of PSPICE and using accurate transistor models, will be proposed. The pull‐in ranges are about ±250Hz around 1 and ±1.3kHz around 10kHz, with pull‐in times of about 10 and 4ms, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A simple realization of a 0.5 V bulk‐driven voltage follower/direct current (DC) level shifter designed in a 0.18 µm CMOS technology is presented in the paper. The circuit is characterized by large input and output voltage swings and a DC voltage gain close to unity. The DC voltage shift between input and output terminals can be regulated in a certain interval around zero, by means of biasing current sinks. An application of the proposed voltage follower circuit for realization of a low‐voltage class AB output stage has also been described in the paper. Finally, the operational amplifier exploiting the proposed output stage has been presented and evaluated in detail. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Novel configurations of fractional‐order filter topologies, realized through the employment of the concept of companding filtering, are introduced in this paper. As a first step, the design procedure is presented in a systematic algorithmic way, while in the next step, the basic building blocks of sinh‐domain and log‐domain integrators are presented. Because of the employment of metal–oxide–semiconductor (MOS) transistors operated in the subthreshold region, the derived filter structures offer the capability for operation in an ultra‐low‐voltage environment. In addition, because of the offered resistorless realizations, the proposed topologies are reconfigurable, in the sense that the order of the filter could be chosen through appropriate bias current sources. The performance of the derived fractional‐order filters has been evaluated through simulation and comparison results using the Analog Design Environment of the Cadence software and MOS transistor parameters provided by the Taiwan Semiconductor Manufacturing Company (TSMC) 180‐nm complementary MOS (CMOS) process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A new 0.5‐V bulk‐driven operational transconductance amplifier (OTA), designed in 50 nm CMOS technology, is presented in the paper. The circuit is characterized by improved linearity and dynamic range obtained for MOS devices operating in moderate inversion region. Some basic applications of the OTA such as a voltage integrator and a second‐order low‐pass filter have also been described. The filter is compared to other low‐voltage filters presented in the literature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We present the design of a nanopower sub‐threshold CMOS voltage reference and the measurements performed over a set of more than 70 samples fabricated in 0.18 µm CMOS technology. The circuit provides a temperature‐compensated reference voltage of 259 mV with an extremely low line sensitivity of only 0.065% at the price of a less effective temperature compensation. The voltage reference properly works with a supply voltage down to 0.6 V and with a power dissipation of only 22.3 nW. Very similar performance has been obtained with and without the inclusion of the start‐up circuit. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A low‐voltage, low‐power, low‐area, wide‐temperature‐range CMOS voltage reference is presented. The proposed reference circuit achieves a measured temperature drift of 15 ppm/°C for an extremely wide temperature range of 190 °C (?60 to 130 °C) while consuming only 4 μW at 0.75 V. It performs a high‐order curvature correction of the reference voltage while consisting of only CMOS transistors operating in subthreshold and polysilicon resistors, without utilizing any diodes or external components such as compensating capacitors. A trade‐off of this circuit topology, in its current form, is the high line sensitivity. The design was fabricated using TowerJazz semiconductor's 0.18‐µm standard CMOS technology and occupies an area of 0.039 mm2. The proposed reference circuit is suitable for high‐precision, low‐energy‐budget applications, such as mobile systems, wearable electronics, and energy harvesting systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
An adaptive continuous‐time equalizer for reliable short‐haul high‐speed serial communications is described in this paper. The adaptive equalizer uses the spectrum‐balancing technique to adapt its response to changes in the bandwidth, amplitude, and bit rate of the input signal. In this way, it is able to compensate the frequency response of a 1‐mm diameter step‐index plastic optical fiber, for lengths up to 50 m, and bit rates ranging from 400 Mb/s to 2.5 Gb/s. Experimental results are shown to demonstrate its feasibility. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A 1.9‐GHz single‐stage differential stacked‐FET power amplifier with uniformly distributed voltage stresses was implemented using 0.32‐μm 2.8‐V thick‐oxide MOSFETs in a 0.18‐μm silicon‐on‐insulator CMOS process. The input cross‐coupled stacked‐FET topology was proposed to evenly distribute the voltage stresses among the stacked transistors, alleviating the breakdown and reliability issues of the stacked‐FET power amplifier in sub‐micrometer CMOS technology. With a 4‐V supply voltage, the proposed power amplifier with an integrated output coupled‐resonator balun showed a small‐signal gain of 17 dB, a saturated output power of 26.1 dBm, and a maximum power‐added efficiency of 41.5% at the operating frequency. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A low‐jitter and low‐power dissipation delay‐locked loop (DLL) is presented. A proposed multi‐band voltage control delay unit (MVCDU) is employed to extend the operation frequency of the DLL by controlling the delay cell within the MVCDU. The jitter of DLL is reduced due to MVCDU's low sensitivity. The delay cell in the MVCDU employs a differential configuration to further reduce the noise impact from the fluctuation in the supply and ground voltage. The operating frequency of the proposed DLL ranges from 120 to 420 MHz. The proposed design has been fabricated in a TSMC 0.18µm CMOS process. The measured RMS and peak‐to‐peak jitters are 4.86 and 34.55 ps, respectively, at an operating frequency of 300 MHz. The power dissipation is below 14.85 mW at an operating frequency of 420 MHz. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This article presents a low quiescent current output‐capacitorless quasi‐digital complementary metal‐oxide‐semiconductor (CMOS) low‐dropout (LDO) voltage regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is segmented into two smaller sizes based on a proposed segmentation criterion, which considers the maximum output voltage transient variations due to the load transient to different load current steps to find the suitable current boundary for segmentation. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Furthermore, this situation is the worst case for stability requirements of the LDO. Therefore, using one smaller transistor for low load currents and another one larger for higher currents, a proper trade‐off between output variations, complexity, and power dissipation is achieved. The proposed LDO regulator has been designed and post‐simulated in HSPICE in a 0.18 µm CMOS process to supply a stable load current between 0 and 100 mA with a 40 pF on‐chip output capacitor, while consuming 4.8 μA quiescent current. The dropout voltage of the LDO is set to 200 mV for 1.8 V input voltage. The results reveal an improvement of approximately 53% and 25% on the output voltage variations and settling time, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A novel circuit technique was applied to the design of a preamplifier for ultra high‐speed short‐distance parallel optical communication system in standard 180‐nm CMOS technology. This circuit is featured by low power, low area as well as high gain bandwidth product, and suited for applications in low‐cost process. The restraint on voltage headroom as bottleneck in traditionally adopted regulated cascode configuration has been fundamentally analyzed and lifted by feed‐forward common gate stage to achieve high gain bandwidth product under limited fT and strict power restriction. Complex poles were carefully assigned to further attain bandwidth extension without sacrifice on power, noise, and chip area. No additional peaking techniques and subsequent gain‐boosting stages are adopted, which makes the design simple and favorable in low‐cost high‐density multi‐channel optical communication system. The preamplifier provides a trans‐impedance gain of up to 52 dBΩ and a 3‐dB bandwidth of 8.4 GHz. Operating under a 1.8‐V supply, the power dissipation is 8 mW, and the chip area is only 0.075×0.08 mm. The measured average input‐referred noise–current spectral density is . Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A low voltage bulk‐driven operational transconductance amplifier (OTA) and its application to implement a tunable Gm‐C filter are presented. The linearity of the proposed OTA is achieved by nonlinear terms cancelation technique, using two paralleled differential topologies with opposite signs in the third‐order harmonic distortion term of the differential output current. The proposed OTA uses 0.8 V supply voltage and consumes 31.2 μW. The proposed OTA shows a total harmonic distortion of better than ?40 dB over the tuning range of the transconductance, by applying 800 mVppd sine wave input signal with 1 MHz frequency. The OTA has been used to implement a third‐order low‐pass Gm‐C filter, which can be used for wireless sensor network applications. The filter can operate as the channel select filter and variable gain amplifier, simultaneously. The gain of the filter can be tuned from ?1 to 23 dB, which results in power consumptions of 187.2 to 450.6 μW, respectively. The proposed OTA and filter have been simulated in a 0.18 µm CMOS technology. Simulations of process corners and temperature variations are also included in the paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A simple gate‐driven scheme to reduce the minimum supply voltage of AC coupled amplifiers by close to a factor of two is introduced. The inclusion of a floating battery in the feedback loop allows both input terminals of the op‐amp to operate very close to a supply rail. This reduces essentially supply requirements. The scheme is verified experimentally with the example of a PGA that operates with ±0.18‐V supply voltages in 0.18‐μm CMOS technology and a power dissipation of about 0.15 μW. It has a 4‐bit digitally programmable gain and 0.7‐Hz to 2‐kHz true constant bandwidth that is independent on gain with a 25‐pF load capacitor. In addition, simulations of the same circuit in 0.13‐μm CMOS technology show that the proposed scheme allows operation with ±0.08‐V supplies, 7.5‐Hz to 8‐kHz true constant bandwidth with a 25‐pF load capacitor, and a total power dissipation of 0.07 μW.  相似文献   

19.
In this paper the response of a bulk‐driven MOS Metal‐Oxide‐Semiconductor input stage over the input common‐mode voltage range is discussed and experimentally evaluated. In particular, the behavior of the effective input transconductance and the input current is studied for different gate bias voltages of the input transistors. A comparison between simulated and measured results, in standard 0.35‐µm CMOS Complementary Metal‐Oxide‐Semiconductor technology, demonstrates that the model of the MOS transistors is not sufficiently accurate for devices operating under forward bias conditions of their source‐bulk pn junction. Therefore, the fabrication and the experimental evaluation of any solution based on this approach are highly recommended. A technique to automatically control the gate bias voltage of a bulk‐driven differential pair is proposed to optimize the design tradeoff between the effective input transconductance and the input current. The proposed input stage was integrated as a standalone block and was also included in a 1.5‐V second‐order operational transconductance amplifier (OTA)‐C lowpass filter. Experimental results validate the effectiveness of the approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A new energy‐efficient tunable pulse generator is presented in this paper using 0.13‐µm CMOS technology for short‐range high‐data‐rate 3.1–10.6 GHz ultra‐wideband applications. A ring oscillator consisting of current‐starved CMOS inverters is quickly switched on and off for the duration of the pulse, and the amplitude envelope is shaped with a variable passive CMOS attenuator. The variable passive attenuator is controlled using an impulse that is created by a low‐power glitch generator (CMOS NOR gate). The glitch generator combines the falling edge of the clock and its delayed inverse, allowing the duration of the impulse to be changed over a wide range (500–900 ps) by varying the delay between the edges. The pulses generated with this technique can provide a sharp frequency roll off with high out‐of‐band rejection to help meet the Federal Communications Commission mask. The entire circuit operates in switched mode with a low average power consumption of less than 3.8 mW at 910 MHz pulse repetition frequency or below 4.2 pJ of energy per pulse. It occupies a total area of 725 × 600 µm2 including bonding pads and decoupling capacitors, and the active circuit area is only 360 × 200 µm2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号