首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the power allocation problem in decode‐and‐forward cognitive dual‐hop systems over Rayleigh fading channels. In order to optimize the performance of the secondary network in terms of power consumption, an outage‐constrained power allocation scheme is proposed. The secondary nodes adjust their transmit power subject to an average interference constraint at the primary receiver and an outage probability constraint for the secondary receivers while having only statistical channel knowledge with respect to the primary nodes. We compare this approach with a power allocation scheme based on instantaneous channel state information under a peak interference constraint. Analytical and numerical results show that the proposed approach, without requiring the constant interchange of channel state information, can achieve a similar performance in terms of outage probability as that of power allocation based on instantaneous channel knowledge. Moreover, the transmit power allocated by the proposed approach is considerably smaller than the power allocated by the method based on instantaneous channel knowledge in more than 50% of the time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Power management has emerged as a challenge of paramount importance having strong social and financial impact in the community. The rapid growth of information and communication technologies made backbone networks a serious energy consumer. Concurrently, backbone networking is deemed as one of the most promising areas to apply energy efficient frameworks. One of the most popular energy efficient techniques, in the context of backbone networks, is to intentionally switch off nodes and links that are monitored underutilized. Having in mind that optical technology has thoroughly dominated modern backbone networks, the function of switching off techniques entails fast operation and rigorous decision‐making because of the tremendous speed of the underlying optical media. This paper addresses this challenge by introducing a novel, adaptive, and efficient power management scheme for large‐scale backbone networks. The proposed framework exploits traffic patterns and dynamics in order to effectively switch off the set of network entities in a periodic fashion. An adaptive decision‐making algorithm is presented to maximize the network energy gains with respect to time constraints as well as QoS guarantees. The conducted simulation results reveal considerable improvements when applying the proposed framework compared with other inflexible energy efficient schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Outage performance is analyzed for opportunistic decode‐and‐forward cooperative networks employing orthogonal space–time block codes. The closed‐form expressions of diversity order and the end‐to‐end outage probability at high signal‐to‐noise ratio regime are derived for arbitrary relay number (K) and antenna configuration (N antennas at the source and each relay, ND antennas at the destination) under independent but not necessarily identical Rayleigh fading channels. The analysis is carried out in terms of the availability of the direct link between the source and the destination. It is demonstrated that the diversity order is min{N, ND} ⋅ KN if the direct link is blocked, and if the direct link is available, the diversity order becomes min{N, ND} ⋅ KN + NND. Simulation and numerical results verify the analysis well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we apply the power splitting–based energy‐harvesting protocol to enhance the transmission between a wireless access point and a mobile user via a helping relay. The mobile user exploits the energy supplied by the access point and forwarded by the relay to transmit its own data back to the access point, again with the helping of the relay. Here, the effect of various system parameters, including power‐splitting factor and the power‐to‐noise ratio on the system performance, is rigorously studied, with closed‐form expressions for the outage probability and system throughput as the results. Furthermore, we figure out the optimal power‐splitting ratio at which the information throughput from the user to the AP is maximized, subject to the constraint on the transmitting power at the access point. All above analytical results are also supported by Monte Carlo simulation.  相似文献   

5.
Multihop cooperative communication is emerging as a key concept to extend the coverage area of the network and potentially increase the capacity. The spectral efficiency of such networks can be improved by adapting the transmission to time‐varying channel conditions, referred to as incremental relaying. Although such incremental relaying concepts are progressively being studied, many challenges, such as erroneous transmissions by intermediate nodes and end‐to‐end delay of the network, limit its practical use due to lack of an efficient implementation. This paper proposes an efficient multihop incremental relaying technique. In this method, erroneous relay forwarding is mitigated, and the overhead for coordination among nodes is reduced by exploiting the implicit feedback channel available due to the broadcast nature of wireless transmissions. The proposed scheme fully leverages the benefit of overhearing and eliminates the additional feedback slots required for validation. Further, it ensures reliable forwarding of information, which optimizes the throughput of multihop networks. Thorough analysis of the proposed scheme is performed under different deployment environments, and the theoretical analyses presented in this paper are supported with results from extensive simulation studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We study the problem of optimizing the symbol error probability (SEP) performance of cluster‐based cooperative wireless sensor networks. Recent studies in literature show that an efficient relay selection protocol based on simple geographical information of the nodes to execute cooperative diversity can significantly improve the SEP performance at the destination of such networks. As well, similar line of research on optimal power allocation (for the source and relay nodes) can be found in literature. However, to achieve the best SEP performance at the destination of a cooperative wireless sensor network, joint optimization of power allocation and relay placement should be accomplished. To this aim, we reformulate the SEP of a multi‐hop cooperative communication in a general form and optimize transmitted power level and relay placement simultaneously. This analysis is developed for both amplify‐and‐forward and decode‐and‐forward relaying protocols. Simulation results demonstrate that the proposed joint optimization can effectively improve the SEP performance of the network. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A utility‐based distributed data routing algorithm is proposed and evaluated for heterogeneous wireless sensor networks. It is energy efficient and is based on a game‐theoretic heuristic load‐balancing approach. It runs on a hierarchical graph arranged as a tree with parents and children. Sensor nodes are considered heterogeneous in terms of their generated traffic, residual energy and data transmission rate and the bandwidth they provide to their children for communication. The proposed method generates a data routing tree in which child nodes are joined to parent nodes in an energy‐efficient way. The principles of the Stackelberg game, in which parents as leaders and children as followers, are used to support the distributive nature of sensor networks. In this context, parents behave cooperatively and help other parents to adjust their loads, while children act selfishly. Simulation results indicate the proposed method can produce on average more load‐balanced trees, resulting in over 30% longer network lifetime compared with the cumulative algorithm proposed in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper proposes a novel protocol based on cooperative relaying between users. The protocol takes advantage of the fact that data traffic is bursty and silent periods exist between data bursts. Rather than wasting these idle time slots, users can take advantage of them to perform cooperative relaying, obviating the need for dedicated system resources for relaying, hence using the spectrum more efficiently. The benefit of this user cooperation for the higher network layers is analyzed. The system was modeled in terms of the maximum stability region and the maximum stable throughput. Our results show that our proposed protocol provides significant performance gains compared to conventional time‐division multiple‐access (TDMA) systems, as well as cooperative relaying protocols, namely selection relaying and incremental relaying. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
With the objective to minimize the energy consumption for packet based communications in energy‐constrained wireless networks, this paper establishes a theoretical model for the joint optimization of the parameters at the physical layer and data link layer. Multilevel quadrature amplitude modulation (MQAM) and automatic repeat request (ARQ) techniques are considered in the system model. The optimization problem is formulated into a three dimensional nonlinear integer programming (NIP) problem with the modulation order, packet size, and retransmission limit as variables. For the retransmission limit, a simple search method is applied to degenerate the three dimensional problem into a two dimensional NIP problem, for which two optimization algorithms are proposed. One is the successive quadratic programming (SQP) algorithm, combining with the continuous relaxation based branch‐and‐bound method, which can obtain the global optimal solution since the continuous relaxation problem is proved to be hidden convex. The other is a low‐complexity sub‐optimal iterative algorithm, combining with the nearest‐neighboring method, which can be implemented with a polynomial complexity. Numerical examples are given to illustrate the optimization solution, which suggests that the joint optimization of the physical/data link layer parameters contributes noticeably to the energy saving in energy‐constrained wireless networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an opportunistic relaying‐based incremental hybrid decode‐amplify‐forward (OR‐IHDAF) scheme that combines robust protocol switch with efficient relay selection is proposed in multi‐relay scenario to cope with the complex and variable channel environments. The proposed OR‐IHDAF scheme can improve the system performance significantly compared with the incremental hybrid decode‐amplify‐forward protocol with the increase of the possible candidate relay nodes and opportunistic relay selection. The analytical expression of the system outage probability of the OR‐IHDAF scheme is presented based on the probability density function and cumulative distribution function, which might be useful to avoid lengthy simulations. Numerical results show the correctness of our theoretical analysis and the performance improvement of the OR‐IHDAF scheme compared with the other current hybrid cooperative protocols and OR‐based cooperative schemes. The effects of the power allocation schemes on the outage probability are also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we investigate the statistical characteristics of the equivalent end‐to‐end signal‐to‐noise ratios (SNRs), the average symbol error ratios (SERs), and the optimal power allocation (OPA) for two‐way amplify‐and‐forward opportunistic relaying (TWOR‐AF) systems. First, with strict mathematic manipulation, we obtain the closed‐form solutions to the PDF, CDF, and moment generating function of the end‐to‐end SNRs. Then, based on the obtained statistical results, we present the total average SER of the Non‐OPA TWOR‐AF systems by using the appropriate approximation, in which only the greater segment of the two terminal SERs is considered. Finally, by aiming at minimizing the total average SER and using the SNRs balancing condition at both transceivers, we study the OPA problem subject to a total transmission power constraint. The comparison analysis shows that, for the Non‐OPA TWOR‐AF systems, we can only evaluate exactly the greater segment of the two SERs of the received signals at two transceivers by using the derivations. However, for the OPA TWOR‐AF systems, with our derivations we can evaluate exactly not only each segment of the two terminal SERs but also the sum SER (exact total SER). Moreover, the simulations show the OPA TWOR‐AF systems outperform the Non‐OPA TWOR‐AF systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Cooperative communication based on relaying nodes has been considered as a promising technique to increase the physical layer security (PLS) performance in wireless communications. In this paper, an optimal power allocation (OPA) scheme based on Nelder‐Mead (NM) algorithm is proposed for improving the secrecy rate of amplify‐and‐forward (AF) cooperative relay networks employing cooperative jamming (CJ) scheme. The proposed hybrid jamming scheme allows the source and selected relay to transmit the jamming signal along with the information to confound the eavesdropper. The path selection probability of ant colony optimization (ACO) algorithm is used for selecting the relay for transmission. The performance based on secrecy rate is evaluated for “n” trusted relays distributed dispersedly between the source and destination. Gradient‐based optimization and three‐dimensional exhaustive search methods are used as benchmark schemes for comparison of the proposed power optimization algorithm. The secrecy performance is also compared with conventional AF scheme and CJ scheme without power optimization (EPA). The impact of single and multiple relays on secrecy performance is also evaluated. Numerical results reveal that, compared with the gradient method and exhaustive search algorithm, the proposed power allocation strategy achieves optimal performance. Also, the derived OPA results show a significantly higher secrecy rate than the EPA strategy for both CJ and AF schemes.  相似文献   

13.
Spatial diversity in wireless networks can be attained by exploiting the broadcast nature of wireless transmission without the need of multiple antennas in individual device, leading to the implementation of cooperative communication. While most prior works focused on the single source—destination scenario, it should be more realistic to consider how to induce cooperation among multiple source‐destination pairs assisted by multiple relays. In such a case, multiple access interference (MAI) may present due to asynchronous transmissions of the users and relays. In this paper, a cooperative network architecture based on orthogonal complementary (OC) codes inherently immune to MAI is proposed. To efficiently utilize the scarce radio spectrum and codes, a centralized medium access control (MAC) protocol is proposed to coordinate the code assignment and channel access among users and relays. We theoretically analyze the bit error rate (BER) performance of the proposed OC coded cooperative network over multipath Rayleigh fading channel. The performance gain resulted from different numbers of relays is investigated, and compared with a time division multiple access (TDMA) based cooperative scheme. We show that the proposed OC coded cooperative network performs well in the presence of timing offset, and thus is well suited for asynchronous uplink transmission with cooperative relaying. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Cognitive femtocell has been considered as a promising technique that can improve the capacity and the utilization of spectrum efficiency in wireless networks because of the short transmission distance and low transmit power. In this paper, we study the win–win solution of energy‐efficient radio resource management in cognitive femtocell networks, where the macrocell tries to maximize its revenue by adjusting spectrum utilization price while the femtocells try to maximize their revenues by dynamically adjusting the transmit power. When the spectrum utilization price is given by macrocell, we formulate the power control problem of standalone femtocells as an optimization problem and introduce a low‐complexity iteration algorithm based on gradient‐assisted binary search algorithm to solve it. Besides, non‐cooperative game is used to formulate the power control problem between collocated femtocells in a collocated femtocell set, and then low complexity and widely used gradient‐based iteration algorithm is applied to obtain the Nash‐equilibrium solution. Specially, asymptotic analysis is applied to find the approximate spectrum utilization price in macrocell, which can greatly reduce the computational complexity of the proposed energy‐efficient radio resource management scheme. Finally, extensive simulation results are presented to verify our theoretical analysis and demonstrate the performance of the proposed scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper derives the asymptotic symbol error rate (SER) and outage probability of decode‐and‐forward (DF) cooperative communications over Rician fading channels. How to optimally allocate the total power is also addressed when the performance metric in terms of SER or outage probability is taken into consideration. Analysis reveals the insights that Rician factor has a great impact on the system performance as compared with the channel variance, and the relay–destination channel quality is of importance. In addition, the source–relay channel condition is irrelevant to the optimal power allocation design. Simulation and numerical evaluation substantiate the tightness of the asymptotic expressions in the high‐SNR regions and demonstrate the accuracy of our theoretical analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Cooperative communications obtain the transmission and channel diversity gains by using the relay node. However, since cooperative communications transmit the redundancy signal to obtain the transmission diversity gain, the transmission rate is degraded. Moreover, since cooperative communications add the interference in the relay node, the diversity gain is also degraded. The packet splitting has been proposed based on the channel state information of the time domain to obtain the good system performance without the redundancy signal. Moreover, the adaptive modulation has been proposed to improve the transmission rate. In this paper, we propose the combination method with the packet splitting and the adaptive modulation based on the channel state information of the time domain to improve the bit error rate and throughput performances for decode‐and‐forward cooperative orthogonal frequency division multiplexing systems in the different channel model. From the computer simulation results, we determine the optimum weight and threshold for the proposed method. Moreover, the proposed method shows the good bit error rate and throughput performances.  相似文献   

17.
Cooperative communication is a promising technique for future wireless networks. It can be used in improving communication reliability and enhancing spectrum efficiency by using the broadcast nature of radio communication and exploiting cooperative diversity. However, its performance gain degrades in the presence of co‐channel interference, which makes it essential to propose interference mitigation schemes. In this paper, we introduce three cooperative communication schemes with interference management for multi‐user cooperative wireless networks. The first scheme (best relay selection) is used as a performance benchmark because it completely avoids the interference problem by using the Frequency‐Division Multiple Access technique. The second scheme (best available relay selection) maximizes the received signal‐to‐noise ratio while keeping the interference levels below a certain threshold, and the third scheme (General Order Relay and User Selection) is based on iterative resource allocation algorithm. We derive exact closed‐form expressions of average bit error probability, outage probability, and average consumed power for the proposed schemes. Simulations are used to validate the analytical results. The results confirm the advantage of the proposed cooperation schemes in enhancing the system performance and improving the interference management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the performance of variable‐rate adaptive modulation schemes in the amplify‐and‐forward cooperative systems with relay selection is analyzed over Rayleigh fading channels. We consider constant power and discrete‐rate adaptive multi‐level modulation techniques. The switching levels required for discrete‐rate adaptive modulation have been determined for two schemes, namely fixed switching levels and optimum switching levels, both respecting a target bit error rate requirements, where in the later scheme, the switching levels are optimally determined in a way that the average spectral efficiency of the system is maximized. Two M‐ary modulation schemes, namely quadrature amplitude modulation and phase shift keying, are considered. Closed‐form expressions are derived for three performance metrics, namely average spectral efficiency, outage probability, and average bit error rate, for two cases: independent and identically distributed fading relay links and independent and non‐identically distributed links. It is shown that, compared with using fixed switching levels, employing optimum switching levels provides a slight improvement in the spectral efficiency and moderate improvements in the signal‐to‐noise ratio gain and in the outage probability of the system. It is also shown that compared with the independent and identically distributed links, independent and non‐identically distributed relay links yield a slight increase in the signal‐to‐noise ratio gain and a slight decrease in the diversity order of the system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the use of jamming transmission for secure amplify‐and‐forward‐based relay networks with total power constraints. An approach that the source and the relay use some of their available power to transmit jamming signals in order to create interference at the eavesdropper is investigated. Assume that the relay and destination have an a priori knowledge of the jamming signals. A power allocation policy that defines how the available power is distributed between the message signal and that of the jamming signal is presented. The results show that the proposed approach can increase the secrecy level and that a positive secrecy rate can be achieved even when the eavesdropper may be near the source. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In addition to the requirements of the terrestrial sensor network where performance metrics such as throughput and packet delivery delay are often emphasized, energy efficiency becomes an even more significant and challenging issue in underwater acoustic sensor networks, especially when long‐term deployment is required. In this paper, we tackle the problem of energy conservation in underwater acoustic sensor networks for long‐term marine monitoring applications. We propose an asynchronous wake‐up scheme based on combinatorial designs to minimize the working duty cycle of sensor nodes. We prove that network connectivity can be properly maintained using such a design even with a reduced duty cycle. We study the utilization ratio of the sink node and the scalability of the network using multiple sink nodes. Simulation results show that the proposed asynchronous wake‐up scheme can effectively reduce the energy consumption for idle listening and can outperform other cyclic difference set‐based wake‐up schemes. More significantly, high performance is achieved without sacrificing network connectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号