首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an energy‐efficient 12‐bit successive approximation‐register A/D converter (ADC). The D/A converter (DAC) plays a crucial role in ADC linearity, which can be enhanced by using larger capacitor arrays. The binary‐window DAC switching scheme proposed in this paper effectively reduces DAC nonlinearity and switching errors to improve both the spurious‐free dynamic range and signal‐to‐noise‐and‐distortion ratio. The ADC prototype occupies an active area of 0.12 mm2 in the 0.18‐μm CMOS process and consumes a total power of 0.6 mW from a 1.5‐V supply. The measured peak differential nonlinearity and integral nonlinearity are 0.57 and 0.73 least significant bit, respectively. The ADC achieves a 64.7‐dB signal‐to‐noise‐and‐distortion ratio and 83‐dB spurious‐free dynamic range at a sampling rate of 10 MS/s, corresponding to a peak figure‐of‐merit of 43 fJ/conversion‐step.  相似文献   

2.
Industrial electronics are in great demand for oil and gas exploration, well drilling, and automotive applications where the operating temperature goes beyond 200 °C. Circuit designs using conventional complementary metal–oxide semiconductor (CMOS) technology are mostly rated at maximum of 125 °C, which is not suitable for harsh environment. In this paper, a high‐temperature (HT) 9‐bit successive approximation register analog‐to‐digital converter (SAR ADC) designed in silicon‐on‐insolation CMOS technology with a sampling rate of 50 kS/s is presented. The design considerations of the HT SAR ADC are discussed from process selection, temperature‐aware circuit design, and measurement perspectives. The ADC achieves an effective number of bit (ENOB) of 8.35 bits and a figure of merit of 93 pJ/step at room temperature. Under HT test, ENOBs of 7.3 bits at 225 °C and 6.9 bits at 300 °C are obtained. The power consumption is 1.52 mW from a 5‐V supply at room temperature and only 2.17 mW at 300 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This study presents an ultra‐low‐power, small‐size, 1‐bit, single‐ended, and switched‐capacitor (SC) delta‐sigma analog‐to‐digital converter (ADC) for wireless acoustic sensor nodes. This wireless sensor node has a delta‐sigma ADC that converts the sensed signal to a digital signal for convenient data processing and emphasizes the features of small size and low‐power consumption. The chip area of the delta‐sigma ADC is dominated by the capacitor; therefore, a novel common‐mode (CM) controlling technique with only transistors is proposed. This ADC achieves an extremely small size of 0.08 mm2 in a 130‐nm CMOS process. The conventional operational transconductance amplifiers (OTAs) are replaced by inverters in the weak inversion region to achieve high power efficiency. At 4‐MHz sampling frequency and 0.7‐V power supply voltage, the delta‐sigma ADC achieves a 55.8‐dB signal‐to‐noise‐plus‐distortion ratio (SNDR) and a 298‐fJ/step figure‐of‐merit (FOM) in a signal bandwidth of 25 kHz, while consuming only 7.5 μW of power. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we present a 434‐nW 8‐bit successive approximation register analog‐to‐digital converter (SAR ADC). We mainly consider the optimization of power consumption. A modified split‐capacitor array involving a novel switching scheme is proposed, which reduces the switching power consumption to just 13.8 for the single‐ended scheme without any losses in performance. Based on the SMIC CMOS 0.1 μm EEPROM 2P4M process, the simulation results show that at 0.5 V supply voltage, 300 kS/s sample frequency, and 4.98 kHz input frequency, the ADC achieves an signal‐to‐noise‐plus‐distortion ratio (SNDR) of 49.58 dB and effective number of bits (ENOB) of 7.94, and consumes 434 nW, resulting in a figure of merit of 5.9 fJ/conversion step. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

5.
This paper presents a high‐speed, high‐resolution column parallel analog‐to‐digital converter (ADC) with global digital error correction. Proposed A/D converter is suitable for using in high‐frame‐rate complementary metal–oxide–semiconductor (CMOS) image sensors. This new method has more advantages than conventional ramp ADC from viewpoint of speed and resolution. A prototype 11‐bit ADC is designed in 0.25‐µm CMOS technology. Moreover, an overall signal‐to‐noise ratio of 63.8 dB can be achieved at 0.5Msample/s. The power dissipation of all 320 column‐parallel ADCs with the peripheral circuits consume 76 mW at 2.5‐V supplies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A successive approximation register analog‐to‐digital converter (SAR ADC) based on a split‐capacitor digital‐to‐analog converter (CDAC) with a split binary weighted capacitor array and C‐2C ladder is proposed. In present design, a unit split capacitor is used in the CDAC instead of the fractional‐value capacitor in the conventional configuration. The preset error induced by the unit split capacitor and the mismatch error of the upper bit CDAC are self‐calibrated. The calibration range and the impact of calibration DAC resolution on circuit linearity are studied to provide an optimum design guideline. Behavior simulation and post‐layout simulation are performed to verify the proposed calibration method. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

7.
针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度 ADC系统设计与建模方法。该方法以10 bit 50 MHz 流水线 ADC为例,首先选取分离采样架构,进行电路的s 域变换理论分 析;其次对电路中各种非理想噪声的表达式进行精确推导,根据系统中的运放功耗指标进行参数优化;最后分别在 MATLAB 和 Cadence 软件中建立模型,进行100点蒙特卡洛仿真。仿真结果表明,在 TSMC180 nm工艺失配下,该流水线 ADC有效位 数达到9.70 bit, 无杂散动态范围维持在76 dB 附近,微分非线性在0.3 LSB以内,积分非线性在0.5 LSB以内,核心功耗在 8mW, 该分析方法在保证流水线 ADC 优异性能的同时,大幅提高了设计效率。  相似文献   

8.
In this paper, a two‐dimensional dynamic element matching digital to analog converter (2D DEM DAC) is proposed having less design complexity compared to the conventional 2D DEM DAC. A novel unit element selection algorithm is presented in order to alleviate the need for consecutive elements selection that is mandatory in the conventional 2D DEM DAC. The flexibility of this algorithm leads to the introduction of a generalized multidimensional DEM DAC applicable to any resolutions. The multidimensional structure mitigates intersegment mismatch error and improves the spurious‐free dynamic range (SFDR) and intermodulation distortion (IMD). A 12‐bit 2D DEM DAC is simulated in 65‐nm CMOS process using the digital return‐to‐zero (DRZ) technique with 1.2 V of supply voltage and power dissipation of 26 mW. The simulation results show 63.4‐ and 60.71‐dB SFDR at near DC and Nyquist frequency, respectively, and <?61‐dB IMD with 1.25‐GHz sampling frequency.  相似文献   

9.
A fast Fourier transform (FFT)‐based digital calibration method for 1.5 bit/stage pipeline analog‐to‐digital converter (ADC) is proposed in this paper. Capacitor mismatch and finite gain of the operational amplifier (OPAMP) can be overcome by the proposed calibration method. Given that the capacitor mismatch and the finite OPAMP gain cause the radix of all the stages of 1.5 bit/stage pipeline ADC to become unequal to 2, the FFT processor can be adopted to evaluate the actual radixes of all the stages and then generate new digital output to compensate for error caused by these non‐ideal effects. Moreover, as capacitor mismatch and the finite gain of OPAMP can be compensated, low‐gain OPAMP can be used in high‐performance ADC to reduce power dissipation; a small capacitor can then be adopted to save on space. An example of a 10 bit 1.5 bit/stage pipelined ADC with only an 8 bit circuit performance is implemented in 0.18 µm TSMC CMOS process. Circuit measurement result reveals that the signal‐to‐noise‐and‐distortion ratio of 51.03 dB with 11 dB improvement after calibration can be achieved at the sample rate of 1 MHz. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Successive approximation register (SAR) analog‐to‐digital converters (ADCs) are widely used due to their low power consumption and area cost. However, testing SAR ADCs on an embedded chip is costly. This paper proposes a capacitance‐ratio quantification design for the linearity test of differential top‐plate sampling SAR ADCs. First, the pattern generator controls the switches connected to the bottom plate of capacitors to create a voltage difference proportional to a certain capacitance ratio on the top plates to be quantified. Then, the proposed mechanism quantifies the capacitance ratio via the auxiliary transistors connected to the input pair of the comparator in the SAR ADC. The capacitance ratios are recorded to construct the differential nonlinearity (DNL) and integral nonlinearity (INL) using the derived construction principles, which simplifies the implementation of the output response analyzer. Thus, the test time and area cost can be reduced with these two proposed mechanisms. For characterizing the DNL, the error between the results obtained using the proposed method and those obtained using conventional linear ramp histogram method is from ?0.10 to 0.11 least significant bits (LSBs). For the INL, the estimation error is from ?0.19 to 0.11 LSBs. Moreover, a test time reduction of about 76% is achieved at the expense of an 18.54% area overhead for the capacitance‐ratio quantification mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a high resolution time‐to‐digital converter (TDC) for low‐area applications. To achieve both high resolution and low circuit area, we propose a dual‐slope voltage‐domain TDC, which is composed of a time‐to‐voltage converter (TVC) and an analog‐to‐digital converter (ADC). In the TVC, a current source and a capacitor are used to make the circuit as simple as possible. For the same reason, a single‐slope ADC, which is commonly used for compact area ADC applications, is adapted and optimized. Because the main non‐linearity occurs in the current source of the TVC and the ramp generator of the ADC, a double gain‐boosting current source is applied to overcome the low output impedance of the current source in the sub‐100‐nm CMOS process. The prototype TDC is implemented using a 65‐nm CMOS process, and occupies only 0.008 mm2. The measurement result shows a dynamic range with an 8‐bit 8.86‐ps resolution and an integrated non‐linearity of ±1.25 LSB. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In vivo neural recording systems require low power and small area, which are the most important parameters in such systems. This paper reports a new architecture for reducing the power dissipation and area, in analog‐to‐digital converters (ADCs). A time‐based approach is used for the subtraction and amplification in conjunction with a current‐mode algorithm and cyclical stage, which the conversion reuses a single stage for three times, to perform analog‐to‐digital conversion. Based on introduced structure, a 10‐bit 100‐kSample/s time‐based cyclical ADC has been designed and simulated in a standard 90‐nm Complementary Metal Oxide Semiconductor (CMOS) process. Design of the system‐level architecture and the circuits was driven by stringent power constraints for small implantable devices. Simulation results show that the ADC achieves a peak signal‐to‐noise and distortion ratio (SNDR) of 59.6 dB, an effective number of bits (ENOB) of 9.6, a total harmonic distortion (THD) of ?64dB, and a peak integral nonlinearity (INL) of 0.55, related to the least significant bit (LSB). The ADC active area occupies 280µm × 250µm. The total power dissipation is 5µW per conversion stage and 20µW from an 1.2‐V supply for full‐scale conversion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes design and implementation of a digitally controlled single‐inductor dual‐output (SIDO) buck converter operating in discontinuous conduction mode. This converter adopts time‐multiplexing control in providing two independent output voltages using only an inductor. The design issues of the digital controller are discussed, including static and dynamic characteristics. Implementation of the controller, a modified hybrid digital pulse width modulator and a single look‐up table are developed. The digital controller was implemented on a field‐programmable gate array‐based control board. Experimental results demonstrating system validity are presented for a SIDO buck converter with nominal 3.6 V input voltage, and the outputs are regulated at 1.8 and 2.2 V. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Recent progress in CMOS integrated successive approximation (SAR) analog‐to‐digital converters (ADCs) is remarkable in terms of architecture and performance. Because of the inherent non‐necessity of active circuit elements such as operational amplifiers, the SAR architecture is suitable for fine CMOS processes. By using a time‐interleaved architecture, it achieves a very high speed conversion rate of 90 G‐sample/s with an 8‐bit resolution. Also, for applications with very low power consumption, such as wireless sensor nodes, it achieves 84 nW at 10‐bit, 200 k‐sample/s. A high signal to noise and distortion ratio (SNDR) can also be achieved by using several techniques such as an SAR architecture that combines oversampling and noise shaping. This survey paper explains the progress made recently in SAR‐ADC circuit techniques and the achieved performances. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
This paper describes selectivity and sensitivity performance evaluations and improvement methods for an on–off keying super‐regenerative (SR) receiver. A slope‐controlled quasi‐exponential quench waveform, generated by a low‐complexity PVT‐tolerant quench generator circuit, is proposed to increase data rate and reduce the receiver 3‐dB bandwidth, thereby preventing oscillation caused by out‐of‐band injected signals and improving the receiver selectivity. The SR receiver sensitivity is also enhanced by a noise‐canceling front‐end topology with single‐ended to differential (S2D) signal converter. To exemplify these techniques, we designed an SR receiver with the proposed front‐end and quench waveform generator in a 0.18‐μm CMOS technology. Theoretical analyses and circuit simulations show 30% and 65% reduction in 3‐dB bandwidth of the SR receiver at 25 Mbps data rate by employing the proposed quench signal compared with piecewise‐linear and trapezoidal quench waveforms, respectively. Performance of the proposed front‐end is evaluated by a fast bit‐error‐rate estimation procedure, based on circuit noise simulations and statistical analyses, without the need for time‐consuming transient‐noise simulations. Accuracy of the procedure has been verified by comparing its results with transient‐noise simulations. According to the estimated bit‐error‐rate curves, the noise‐canceling topology with S2D converter enhances the SR receiver sensitivity by 9 dB. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes a fully differential, cyclic, analogue‐to‐digital converter (ADC). It utilizes a 4‐bit binary weighted capacitor array to obtain 9‐bit resolution. The ADC uses an operational amplifier to suppress supply voltage variations. The operational amplifier with the slew‐rate detection is used to increase the speed of the ADC. The ADC is fabricated in IBM 0.13 μm CMOS process and occupies 650 × 850μm2 active area. At 10 kS/s sampling rate, the ADC consumes 11 μW. In order to test immunity of the ADC on the supply voltage variations, static and dynamic performance of the ADC is measured with triangular supply voltage (V D C  = 1.5 V, V A C  = 200mV pp, f  = 1 kHz). The measured peak of differential nonlinearity and integral nonlinearity is  + 0.26/ − 0.67 and  + 0.65/ − 0.59, respectively. At 250 Hz, effective number of bit is 8.4 bits, S F D R  = 66.7 dB and S N D R  = 52.6 dB. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
本文给出了考虑噪声和动态误差时的高速模数转换器(ADC)的动态传输模型。提出了利用双谱分析高速ADC动态偏置误差的方法。同时,指出双谱方法可以明显地减小ADC噪声本底对微小偏置误差测量的影响,提高测量的灵敏度和精度。最后给出的计算机模拟测试结果表明,双谱法比功率法具有更高的检测分辨率和抗噪声能力。  相似文献   

18.
设计了一款14位、125MS/s流水线模数转换器(ADC)。通过前端采样/保持电路(SHA)消除对输入信号采样的孔径误差,采用4位结构的首级转换电路提高ADC线性性能,设计了带输入缓冲的栅压自举开关以缓解首级转换电路输入采样开关中自举电容对SHA的负载效应,流水线ADC级间通过逐级按比例缩减策略使功耗得到节省。该设计采用0.18μm 1P5MCMOS工艺,ADC版图面积2.3 mm×1.4 mm。Spectre后仿真结果显示,采样频率125 MHz、输入信号在接近Nyquist频率(61MHz)处时信号噪声畸变比(SNDR)和无杂散动态范围(SFDR)可分别达到75.7 dB和85.9 dB。在1.8V电源电压下,ADC核心部分功耗为263 mW。  相似文献   

19.
A reference‐less all‐digital burst‐mode clock and data recovery circuit (CDR) is proposed in the paper. The burst‐mode CDR includes a coarse and a fine time‐to‐digital converter (TDC) with embedded phase generator. A low‐power current‐starved inverter is employed as the delay unit of the fine TDC to acquire the high measurement resolution. A calibration method to diminish the inherent delay is used to reduce the quantization error of the recovery clock. The proposed CDR is fabricated in a 65‐nm CMOS process. Experiment results show that the CDR operates from 0.9 to 1.1 Gbps and have a 13‐bit consecutive identical digits (CIDs) tolerance.  相似文献   

20.
Embedding the time encoding approach inside the loop of the sigma‐delta modulators has been shown as a promising alternative to overcome the resolution problems of analog‐to‐digital converters in low‐voltage complementary metal‐oxide semiconductor (CMOS) circuits. In this paper, a wideband noise‐transfer‐function (NTF)‐enhanced time‐based continuous‐time sigma‐delta modulator (TCSDM) with a second‐order noise‐coupling is presented. The proposed structure benefits from the combination of an asynchronous pulse width modulator as the voltage‐to‐time converter and a time‐to‐digital converter as the sampler to realize the time quantization. By using a novel implementation of the analog‐based noise‐coupling technique, the modulator's noise‐shaping order is improved by two. The concept is elaborated for an NTF‐enhanced second‐order TCSDM, and the comparative analytical calculations and behavioral simulation results are presented to verify the performance of the proposed structure. To further confirm the effectiveness of the presented structure, the circuit‐level implementation of the modulator is provided in Taiwan Semiconductor Manufacturing Company (TSMC) 90 nm CMOS technology. The simulation results show that the proposed modulator achieves a dynamic range of 84 dB over 30 MHz bandwidth while consuming less than 25 mW power from a single 1 V power supply. With the proposed time‐based noise‐coupling structure, both the order and bandwidth requirements of the loop filter are relaxed, and as a result, the analog complexity of the modulator is significantly reduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号