首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Modern energy transmission and signal reproduction techniques rely upon power amplifiers that must operate with high efficiency. An increasingly popular technique for addressing this problem involves replacing the fixed power amplifier supply voltage V D D with a controlled, variable voltage provided by a dynamic power supply. Although pulse‐width modulated dc‐dc buck converters typically function as fixed‐output supplies, this paper provides new theoretical dc analysis for operation wherein the output voltage is controlled and continuously variable over a wide range. A design procedure for the variable‐output buck converter is derived. Key device parameters affecting converter speed and efficiency are identified. The dc analysis and design procedure are verified experimentally, with calculated and measured parameters shown to be in good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a new multiport zero voltage switching dc‐dc converter is proposed. Multiport dc‐dc converters are widely applicable in hybrid energy generating systems to provide substantial power to sensitive loads. The proposed topology can operate in 3 operational modes of boost, buck, and buck‐boost. Moreover, it has zero voltage switching operation for all switches and has the ability to eliminate the input current ripple; also, at low voltage side, the input sources can be extended. In addition, it has the ability of interfacing 3 different voltages only by using 3 switches. In this paper, the proposed topology is analyzed theoretically for all operating modes; besides, the voltage and current equations of all components are calculated. Furthermore, the required soft switching and zero input currents ripple conditions are analyzed. Finally, to demonstrate the accurate performance of the proposed converter, the Power System Computer Aided Design(PSCAD)/Electro Magnetic Transient Design and Control(EMTDC) simulation and experimental results are extracted and presented.  相似文献   

3.
In this paper, we have proposed Single‐Inductor Dual‐Output (SIDO) buck–buck and boost–boost dc–dc converter using improved RC ripple regulator control. The proposed SIDO buck–buck converter has the characteristics of low‐ripple and high control frequency. RC ripple regulator control cannot be applied to SIDO boost–boost converter because RC ripple regulator undergoes self‐excited oscillation and two self‐excited oscillating controllers make the SIDO converter unstable. Thus we proposed the priority circuit for RC ripple regulator control. The proposed control circuit improves response characteristic and simplicity of the control circuit. Simulations are performed to verify the validity of the proposed SIDO converter. Simulation results indicate good performance of the proposed SIDO converter.  相似文献   

4.
提出了一种电感电流断续工作模式(DCM)单电感双输出(SIDO)Buck变换器的电流型脉冲序列(PT)控制方法。为避免两路输出的交叉影响,应用时分复用理论,由时分复用信号决定两路输出中相应输出支路的调节,从而实现每一个输出支路的独立调节,避免了两个输出支路的交叉影响;通过在脉冲序列中加入空白脉冲,改善了变换器轻载时的瞬态响应及开关损耗;在控制回路中引入了电流环,实现主功率回路的逐周期限流。有别于传统电流型脉冲宽度调制(PWM)控制技术,电流型PT控制不需要误差放大器及相应的补偿网络,因此具有实现简单和瞬态响应快的优点。仿真与实验验证本文研究结果的正确性。  相似文献   

5.
An isolated ac‐dc converter has been used in various applications, such as power supply and as a battery charger for electric vehicle. In conventional converters, a loss in each conversion stage can be reduced by applying a soft switching method. However, a conventional converter has many conversion stages including the rectifier stage, power factor correction, and dc/dc converter stages; thus, it is difficult to reduce the total converter loss and size. In this paper, we propose a novel isolated‐type ac‐dc converter with only one conversion stage; it can realize a zero‐voltage switching operation in all switching devices.  相似文献   

6.
An interleaved pulse‐width modulation (PWM) converter with less power switches is presented in this paper. The buck type of active clamp circuit is used to recycle the energy stored in the leakage inductor of a transformer. The zero voltage switching (ZVS) turn‐on of power switches is realized by the resonance during the transition interval of power switches. At the secondary side of transformers, two full‐wave rectifiers with dual‐output configuration are connected in parallel to reduce the current stresses of the secondary windings of transformers. In the proposed converter, power switches can accomplish two functions of the interleaved PWM modulation and active clamp feature at the same time. Therefore, the circuit components in the proposed converter are less than that of the conventional interleaved ZVS forward converter. The operation principle and system analysis of the proposed converter are provided in detail. Experimental results for a 280 W prototype operated at 100 kHz are provided to demonstrate the effectiveness of the proposed converter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes a new single‐phase buck‐boost power‐factor‐correction (PFC) converter with output‐voltage, ripple reducing operation. The converter consists of a conventional buck‐boost PFC converter and an additional switch to obtain a freewheeling mode of the dc inductor current, and is operated by two modulators. The first modulator controls the buck‐boost switch to obtain PFC. The other modulator controls the square value of the instantaneous dc inductor current to perform the output‐voltage‐ripple‐reducing operation. In the two modulations, the time integral value of the input and output currents in each modulation period are controlled directly and indirectly, respectively. Thus, modulation errors or undesirable distortions of the input current and output voltage ripple are eliminated even if the dc inductor current produces large ripple in a low‐frequency range. The theories and combination techniques for the two modulators, implementation, and experimental results are described. © 1998 Scripta Technica, Electr Eng Jpn, 126(2): 56–70, 1999  相似文献   

8.
The study of multi‐state dc–dc power conversion techniques is restricted by the complicated inner switching behaviors. This paper presents a general and unified transient analysis for various sorts of multi‐state dc–dc converters from a viewpoint of their system energy characteristics. With the applications to the boost converters, the proposed analytical method has indicated its advantages of high convenience and practicability to the multi‐state converters. The generalized concepts of system energy parameters of dc–dc converters are introduced and applied to the transient analysis. Consequently, the expressions of system model parameters of multi‐state dc–dc converters are deduced. The new 2nd order transfer functions are obtained to describe the large‐ and small‐signal mathematical models accurately. The model simulation and experimental results are provided to support the theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a structural approach to synthesizing, analyzing, and modeling quasi‐resonant converters (QRCs) based on the concept of basic converter units (BCUs). Typical QRCs include the well‐known topologies of buck, boost, buck‐boost, Cuk, Zeta, and Sepic. With proper reconfiguration, these QRCs can be synthesized from either buck‐QRC BCU or boost‐QRC BCU plus certain linear networks. Thus, the BCUs and general configurations of the converters can be identified. Analysis of steady state operation and derivation of small‐signal models for the converters then can be conveniently performed from the general configurations, reducing the complexity significantly. Moreover, the proposed structural approach can explore more physical insights into the converters in a family, and can reveal more relationships among converters over conventional approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new hybrid dc–dc converter with low circulating current within the freewheeling interval, wide range of zero‐voltage switching and reduced output current ripple is presented. The proposed hybrid circuit includes two three‐level pulse‐width modulation converters and a series resonant converter with the shard lagging‐leg switches. Series resonant converter is operated at fixed switching frequency (close to series resonant frequency) to extend the zero‐voltage switching range of lagging‐leg switches. The output of series resonant converter is connected to the secondary sides of three‐level converters to produce a positive rectified voltage instead of zero voltage. Hence, the output inductances can be reduced. The reflected positive voltage is used to decrease the circulating current to zero during the freewheeling interval. Therefore, the circulating current losses in three‐level converters are improved. Finally, experiments are presented for a 1.44 kW prototype circuit converting 800 V input to an output voltage 24 V/60A. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We propose a method of estimating the fast‐scale stability margin of dc–dc converters based on Filippov's theory—originally developed for mechanical systems with impacts and stick‐slip motion. In this method one calculates the state transition matrix over a complete clock cycle, and the eigenvalues of this matrix indicate the stability margin. Important components of this matrix are the state transition matrices across the switching events, called saltation matrices. We applied this method to estimate the stability margins of a few commonly used converter and control schemes. Finally, we show that the form of the saltation matrix suggests new control strategies to increase the stability margin, which we experimentally demonstrate using a voltage‐mode‐controlled buck converter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
An indirect control variable for improving the control‐to‐output characteristics of a Pulse Width Modulation (PWM) buck‐boost converter is introduced in this letter. The voltage gain and the small‐signal model of the buck‐boost converter are reviewed. The actual voltage command at one input of the PWM comparator is from the proposed indirect control variable and the peak value of the high‐frequency PWM carrier. The resulted voltage gain function appears proportional to this indirect control command. Also the dependence of the DC gain of the control‐to‐output transfer function on the duty cycle is eliminated. Experimental results conform well to the theoretical analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
For extending self‐commutated converter application to future trunk power systems, it is important to develop a stable operation scheme as well as to realize substantial cost reduction through coordinated system and control design. Suppression controls of converter overcurrent and dc overvoltage in various system fault conditions are essential in order to ensure stable operation and cost reduction of HVDC systems with voltage source type self‐commutated converters. Converter control and protection schemes which include such suppression controls have been developed, employing CRIEPI's ac/dc Power System Simulator test and EMTP analysis. This paper first discusses the cause of converter overcurrent at ac system faults, considering the effect of PWM pulse number and converter control speed. Continued operation has been achieved by adding a new overcurrent suppression scheme to the converter control. In the case of a dc line grounding fault, the selection of the grounding circuit constant and the adoption of a high‐speed converter control practically ensure the reduction of dc overvoltage while suppressing converter overcurrent. The converter block and restart sequence after a dc fault, which is coordinated with dc circuit breaker operation, enables stable recovery of HVDC transmission as fast as the usual line‐commutated HVDC system. © 2000 Scripta Technica, Electr Eng Jpn, 132(2): 6–18, 2000  相似文献   

14.
The response of a digital Zero Average Dynamics (ZAD)‐controlled buck converter under the variation of its intrinsic parameters as well as the pulse‐width modulation signal is studied in detail. The multiparameter analysis presented here leads to a complete knowledge of the different dynamical scenarios exhibited by the system. Numerical results indicate that the success of the ZAD‐strategy is highly dependent on the parameter and pulse‐width modulation (PWM) combinations. Experiments are included to validate the performance inside the so‐called optimum region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In recent years, a wide variety of high‐power‐factor converter schemes have been proposed to solve the harmonic problem. The schemes are based on conventional boost, buck, or buck–boost topology, and their performance, such as output voltage control range in the boost and buck topology or efficiency in the buck–boost topology, is limited. To solve this, the authors propose a single‐phase high‐power‐factor converter with a new topology obtained from a combination of buck and buck–boost topology. The power stage performs the buck and buck–boost operations by a compact single‐stage converter circuit while the simple controller/modulator appropriately controls the alternation of the buck and buck–boost operation and maintains a high‐quality input current during both the buck and buck–boost operations. The proposed scheme results in a high‐performance rectifier with no limitation of output voltage control range and a high efficiency. In this paper, the principle and operation of the proposed converter scheme are described in detail and the theory is confirmed through experimental results obtained from 2‐kW prototype converter. © 2000 Scripta Technica, Electr Eng Jpn, 131(3): 91–100, 2000  相似文献   

16.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

17.
The authors have devised a new method to decrease high‐frequency harmonics in a specific frequency band by modifying the switching transient slope. In previous studies, there were several problems in applying modified transient pulse width modulation (MT‐PWM) to actual converters. In this paper, three problems are solved using an improved MT‐PWM method. First, the MT‐PWM signal was obtained using a trial‐and‐error approach that involved complex computation procedures in the previous studies. In this paper, a new calculation procedure for obtaining the MT‐PWM waveform using a simple calculation is proposed. Second, a new controller (drain‐source voltage controller) based on voltage feedback is proposed in order to realize a modified switching transient to increase the stability of the switching operation. Third, the dependency of MT‐PWM on source voltage variation is investigated in order to implement MT‐PWM in an actual step‐down converter. From this result, the concept of a new type of controller with the source voltage variation taken into consideration is proposed. Finally, the authors attempted to apply MT‐PWM to an H‐bridge converter to expand the application of MT‐PWM. An H‐bridge converter with MT‐PWM for a dc motor drive is successfully operated in an experiment.  相似文献   

18.
This paper is an extension of the author's recent research in which only buck converters were analyzed. Similar analysis can be equally applied to other types of converters. In this paper, a unified model is proposed for buck, boost, and buck–boost converters under peak or average current mode control to predict the occurrence of subharmonic oscillation. Based on the unified model, the associated stability conditions are derived in closed forms. The same stability condition can be applied to buck, boost, and buck–boost converters. Based on the closed‐form conditions, the effects of various converter parameters including the compensator poles and zeros on the stability can be clearly seen, and these parameters can be consolidated into a few ones. High‐order compensators such as type‐II and PI compensators are considered. Some new plots are also proposed for design purpose to avoid the instability. The instability is found to be associated with large crossover frequency. A conservative stability condition, agreed with the past research, is derived. The effect of the voltage loop ripple on the instability is also analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Several new topologies of single‐switch non‐isolated DC–DC converters with wide conversion gain and reduced semiconductor voltage stress are proposed in this paper. Most of the proposed topologies are derived from the conventional inverse of SEPIC (Zeta) converter. The proposed topologies can operate with larger switch duty cycles compared with the existing single switch topologies, hence, making them well suitable for high step‐down voltage conversion applications. With extended duty cycle, the current stress in the active power switch is reduced, leading to a significant improvement of the system losses. Moreover, the active power switch in some of the proposed topologies is utilized much better compared to the conventional Zeta and quadratic‐buck converters. The principle of operation, theoretical analysis, and comparison of circuit performances with other step‐down converters are discussed regarding voltage and current stress and switch silicon utilization. Finally, simulation and experimental results for a design example of a 50 W/5 V at 42‐V input voltage operating at 50 kHz will be provided to evaluate the performance of the proposed converters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes design and implementation of a digitally controlled single‐inductor dual‐output (SIDO) buck converter operating in discontinuous conduction mode. This converter adopts time‐multiplexing control in providing two independent output voltages using only an inductor. The design issues of the digital controller are discussed, including static and dynamic characteristics. Implementation of the controller, a modified hybrid digital pulse width modulator and a single look‐up table are developed. The digital controller was implemented on a field‐programmable gate array‐based control board. Experimental results demonstrating system validity are presented for a SIDO buck converter with nominal 3.6 V input voltage, and the outputs are regulated at 1.8 and 2.2 V. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号