首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose the use of low‐rate layered serially concatenated low‐density generator matrix (SCLDGM) codes in interleave‐division multiple access (IDMA) systems to approach the multiuser capacity. We study the behavior of the soft interference cancellation (SIC) detector employed in IDMA systems and design the channel codes using EXtrinsic Information Transfer (EXIT) evolution, aiming at optimizing the system performance. Simulation results show that the designed codes approach the theoretical limits and outperform previous IDMA schemes based on Turbo‐Hadamard codes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Interleaving is one of the most common methods known to eradicate the effects of multiple user interference. Removal of different interferences is one of the major challenges for advanced communication system designers. Several methods of interleaving have been proposed in literature and their performances have been analyzed on different communication systems to prove their worthiness in multiple user interference removal. One of such interleavers is power interleaver, which can be employed in communication systems as a means to control burst errors and reduce the multiple user interference. In this paper, performances of two different integrated interleave division multiple access (IIDMA) techniques i.e. SCFDM-IDMA and OFDM-IDMA have been analyzed. Novelty of this work is in the sense that the entire analysis has been performed in the presence of power interleavers for the above two IIDMA techniques as the conventional IDMA fails to mitigate the problems of inter-carrier and inter-symbol interferences. Hence, the two techniques in presence of power interleavers empower the idea of quality communication without any interference for future generation communication systems.  相似文献   

3.
Wireless communication systems have gained huge attraction from research community, industrial, and academic field due to their significant impact on improving the communication efficiency, ease of deployment, and cost‐effective solution for real‐time communication. In this field of wireless communication, cellular communications have grown rapidly due to their daily usages and advantages. This increased demand of cellular communication systems has led to the evolution of 3G, 4G, and 5G communication systems, which in turn demands for higher efficiency and better bandwidth utilization. Due to heavy usage of network communication, multiple users may cause interference which subsequently may lead to the performance degradation which could be addressed using multiuser detection scheme. However, several schemes have been introduced for improving the system performance, but multiple access (MA) still remains a challenging task. Hence, in this work, we present a novel approach called Spatial Log‐Likelihood Multiuser Detection and Interference Cancelation (SLLR‐MDIC) that uses interleaving division multiple access (IDMA) to improve the communication and developed a multiuser detection approach using spatial log‐likelihood ratios. Further, we have developed orthogonal frequency‐division multiple access (OFDM)–IDMA‐based interference cancelation scheme in multiple access to improve the performance using rake receiver based approach. The performance of SLLR‐MDIC scheme is compared with existing techniques of multiuser detection in terms of bit‐error rate (BER) and symbol error rate (SER). The experimental analysis shows that proposed approach achieves improved performance when compared with existing techniques.  相似文献   

4.
贾宁  刘彪  黄建纯  李燕  郭中源  肖东  郭圣明 《信号处理》2019,35(9):1555-1563
水声通信网络的快速发展对多用户水声物理层通信技术提出了迫切的需求。本文主要针对水声多用户下行通信链路中存在严重码间干扰和多址干扰的问题,提出了一种交织多址(IDMA)水声多用户下行通信链路迭代接收算法,能够根据译码器输出的软信息对估计的信道进行迭代更新,同时根据信道估计结果重建各用户对当前用户的多址干扰(MAI),并使用干扰抵消器予以抵消,通过在均衡器、译码器和干扰抵消器之间的迭代逐次提高当前用户信息的输出信噪比,最终实现正确解调。其中,信道估计算法采用LMMSE初始化的分簇OMP稀疏信道估计算法,多普勒估计采用时频二维搜索结合自相关相位估计的方法,计算机仿真结果表明该接收机具有与已知信道时接近或相当的性能。进行了多用户水声通信海上试验,在4.5km、6km和7km三个距离实现了对2个用户、3个用户和4个用户的同时通信,每个用户的通信净速率约为500bps,证明了本文所提出的方法能够有效应用在多用户水声通信中,为水声通信网络的发展提供了一种重要的物理层通信技术手段。   相似文献   

5.
In this paper, we propose an efficient uplink and downlink cooperative transmission and receiving scheme for interleave-division multiple access (IDMA) systems with time-reversal (TR) technique. We refer this system as TDR-IDMA, since the time- division duplexing (TDD) mode is used in this transceiver system. In TDR-IDMA systems, the time-reversed version of the channel impulse responses obtained from the uplink is used to process the received signal before the elementary signal estimator in the receiver of base station (BS). Due to the weak correlations of multi-path for different users, the signal to interference and noise ratio (SINR) at the beginning of turbo-like detection of TDR-IDMA can be increased significantly. Compared with conventional IDMA system, much less iterations is needed for signal detection in TDR-IDMA systems. Thus, the proposed scheme effectively reduces the multi-user detection (MUD) computation load for the uplink, which is the bottleneck for IDMA system. TR processing is also applied in the transmitter of BS to reduce the complexity of user ends (UEs). Simulation and analysis results show that TDR-IDMA can achieve the same performance of the traditional IDMA system with fast processing speed and simple UEs.  相似文献   

6.
A highly efficient multi‐access scheme of broadband power line (BPL) communication, named as OFDM‐BPS‐OPDMA, is proposed based on the Orthogonal Pulse Division Multiplexing Access (OPDMA), Barker‐code‐based Spectrum Spreading (BSS) and Orthogonal Frequency Division Multiplexing (OFDM) method. The orthogonal pulses are generated by using the eigenvectors of Hermitian matrix. At the same time, a specific pulse will be allocated to every user of the communication system. The transmitting data are first modulated by OFDM. Then, it is processed with OPDMA and BSS. Finally, the data is sent to the power line channel. On the receiving side, the data is processed with BSS demodulation, OPDMA demodulation and OFDM demodulation, and the receiving data for each user is acquired. Because of the orthogonality between these pulses, the multi‐user interference could be eliminated; when BSS is used, the waveform restoration is enhanced. Meanwhile, with the help of OFDM, the multi‐path interference is mitigated. Particularly, all users can share the resources of time and spectrum without interfering with others, and get excellent reliability in the concerned scheme. When OFDM is used, the sub‐carriers may be allocated dynamically, and the legal radio frequency band could be shunned by sharing the common bandwidth with other communication systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Multi‐hop communications equipped with parallel relay nodes is an emerging network scenario visible in environments with high node density. Conventional interference‐free medium access control (MAC) has little capability in utilizing such parallel relays because it essentially prohibits the existence of co‐channel interference and limits the feasibility of concurrent communications. This paper aims at presenting a cooperative multi‐input multi‐output (MIMO) space division multiple access (SDMA) design that uses each hop's parallel relay nodes to improve multi‐hop throughput performance. Specifically, we use MIMO and SDMA to enable concurrent transmissions (from multiple Tx nodes to single/multiple Rx nodes) and suppress simultaneous links' co‐channel interference. As a joint physical layer (MAC/PHY) solution, our design has multiple MAC modules including load balancing that uniformly splits traffic packets at parallel relay nodes and multi‐hop scheduling taking co‐channel interference into consideration. Meanwhile, our PHY layer modules include distributive channel sounding that exchanges channel information in a decentralized manner and link adaptation module estimating instantaneous link rate per time frame. Simulation results validate that compared with interference‐free MAC or existing Mitigating Interference using Multiple Antennas (MIMA‐MAC), our proposed design can improve end‐to‐end throughput by around 30% to 50%. In addition, we further discuss its application on extended multi‐hop topology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we propose a novel low‐complexity transmission power adaptation with good bit error rate (BER) performance for multicarrier code‐division multiple‐access (MC‐CDMA) systems over Nakagami‐m fading channels. We first propose a new receiver called ath‐order‐maximal‐ratio‐combining (a‐MRC) receiver with which the receiver power gain for the nth subcarrier is the ath (a?1) power of the corresponding channel gain. Incorporating the a‐MRC receiver, we then propose a new transmission power adaptation scheme where the transmission power is allocated over all the N subcarriers according to the subchannel gains and the transmitter adapts its power to maintain a constant signal‐to‐interference‐plus‐noise (SINR) at the receiver. The proposed scheme has a significant performance gain over the nonadaptive transmission scheme over both independent and correlated fading channels. Moreover, the proposed scheme keeps good BER performance while it is much simpler than the previous power control/adaptation schemes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents and compares the capacities of multi‐cell and power constrained direct sequence‐code division multiple access (DS/CDMA) systems with different transmission or detection schemes. In the single‐class case (voice), we considered conventional and successive interference cancellation (SIC) schemes, determining the maximum number of users of each mode. Next, modeling and results proposed in the literature are extended for multi‐cell dual‐class systems (voice and data) and we compare the maximum data throughputs obtained with conventional, SIC and scheduling (transmission) schemes, for some user configurations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
LTE‐Advanced heterogeneous networks deployment is meant to address the increasing demand for quality of service, high data rates and coverage extension. Load balancing is among the primary challenges, especially when the user equipments (UEs) associate with diverse transmission power network tiers using received signal strength. The low‐power network tier's spectrum will be underutilized, and UEs associated with them will be inflicted by interference from the high‐power network tier. The proposed hybrid channel gain prioritized access (HCGPA)‐aware cell association scheme stresses the importance of combined metrics with interference mitigation to simultaneously achieve load balancing and enhance performance among the network tiers. The high‐priority UEs associate with the tier that gives the maximum channel gain being higher than a given threshold. While the low‐priority UEs association is based on the maximum joint metrics (channel gain, channel access probabilities of low‐priority UEs and high‐priority UEs). The HCGPA scheme has 1.72 times the number of UEs connected to low‐power networks, 8% better load balancing fairness, compared with the conventional reference signal receive power and RSRP + 6 dB bias cell associations. Although the susceptibility of HCGPA to interference led to the poor signal to interference to noise ratio (SINR) performance of the cell‐edge UEs, the cell‐centre UEs exhibited the best spectral efficiency performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The two‐dimensional (2D) block spread code division multiple access (CDMA) can avoid the uplink multiple‐access interference with low‐complexity single‐user detection in a slow fading channel and, therefore, is very attractive. In the 2D spreading, orthogonal variable spreading factor (OVSF) is used for spreading; an important problem is how to efficiently assign the limited resource of OVSF codes to users with different data rates, while meeting the requirement of quality of service in a multi‐cell environment. In this paper, it is shown that the code reuse can improve the code reuse efficiency and the proposed code reuse scheme combined with code assignment algorithm can allow flexible multi‐rate uplink transmission. The computer simulation confirms that the proposed code assignment algorithm improves the code reuse efficiency while achieving lower blocking probability than traditional CDMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we propose a new tree based interleaver (TBI) to generate different chip‐level interleaving sequences for different users in an interleave division multiple access (IDMA) system, which reduces computational complexity. This method of generation also solves the memory cost problem and reduces the amount of information exchange between mobile stations (MSs) and base stations (BSs) required to specify the interleaver. Simulation results are presented to show that the proposed interleavers perform well as compared to random interleavers in an IDMA system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper analyzes the performance of cooperative decode‐and‐forward (DF) interleave‐division multiple‐access (IDMA) networks with best relay selection over Rayleigh/Weibull fading environments. In the analysis, approximate outage probability (OP) and bit error probability (BEP) expressions are derived for the considered system. Further, a 2‐hop DF IDMA system is also designed to compare with cooperative one. We propose OP and BEP expression for 2‐hop DF IDMA systems. Numerical results are obtained by changing the number of relays and the value of fading parameter in the proposed expressions. Also, simulations are provided to corroborate the exactness of the derived approximate OP and BEP expressions.  相似文献   

14.
In this paper, we address the issue of multi‐user receiver design in realistic multi‐cellular and multi‐rate CDMA systems based on performance analysis. We consider the multi‐user detection (MUD) technique, denoted interference subspace rejection (ISR), because it offers a wide range of canonic suppression modes that range in performance and complexity between interference cancellers and linear receivers. To further broaden our study, we propose a modified ISR scheme called hybrid ISR to cope better with multi‐rate transmissions. The performance analysis, which is based on the Gaussian assumption (GA) and validated by simulations, takes into account data estimation errors, carrier frequency mismatch, imperfect power control, identification errors of time‐varying multipath Rayleigh channels and intercell interference. This analysis enables us to optimize the selection of the MUD mode for multi‐rate transmissions in different operating conditions. The effectiveness of interference cancellation is indeed investigated under different mobile speeds, numbers of receiving antennas, near‐far situations, channel estimation errors, and out‐cell to in‐cell interference ratios. This investigation suggests that the out‐of‐cell interference, the residual in‐cell interference, the noise enhancement as well as low mobility favor the simplest MUD modes as they offer the best performance/complexity tradeoffs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Multicarrier code division multiple access (MC‐CDMA), is a promising multiplexing technique for future communication systems. In this study, we employ the well‐known Walsh‐Hadamard spreading codes for synchronous downlink transmission of MC‐CDMA systems. The spreading codes allow that the frequency diversity to be efficiently exploited. However, multipath propagation may cause orthogonality among users is distorted, and this distortion produces multiple access interference (MAI). To eliminate this effect, we propose a pre‐filtering‐based MC‐CDMA system which uses a pre‐filtering technique at the transmitter and an equal gain combining (EGC) scheme at the receivers, respectively. Our proposed pre‐filtering technique transforms the transmitted signals so that the MAI can be eliminated, and the EGC scheme weights the signals received from all subcarriers so that channel distortions can be compensated. Furthermore, the proposed technique can calculate the transmitted power over all subcarriers to satisfy the required quality of service of each user and archive MAI‐free. In this paper, performance in terms of bit error rate is analyzed; in comparison with the EGC, orthogonal restoring combining, and maximal ratio combining schemes at receiver, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this letter, we propose an efficient near‐optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi‐user multiple‐input multiple‐output (MU‐MIMO) systems. In practical MU‐MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near‐optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.  相似文献   

17.
In heterogeneous wireless networks, signal‐to‐interference‐plus‐noise ratio (SINR) suffers degradation due to strong interference received by users from offloaded macro base station (mBS). Similarly, cell‐edge users experience low SINR due to their distant locations. Moreover, small base stations (sBSs) located in the vicinity of mBS experience reduced coverage due to the high transmit power of mBS. To overcome these limitations, we use Stienen's model as a base station deployment strategy to improve network performance gain. More specifically, we use reverse frequency allocation (RFA) as an interference management scheme together with Stienen's model to significantly improve SINR, enhance edge user coverage, and avoid sBS deployment near the mBS. In the proposed set‐up, the available coverage region is divided into two noncontiguous regions, ie, center region and outer region. Furthermore, mBSs are uniformly distributed throughout the coverage region using independent Poisson point processes, while sBSs are deployed only in outer region using Poisson hole process (PHP). Closed‐form expressions for coverage probabilities are characterized for the proposed model. Numerical results show that the proposed scheme yields improved SINR with enhanced edge user coverage and requires fewer number of sBSs.  相似文献   

18.
For multi‐cell systems employing intra‐cell orthogonal communication channels, inter‐cell interference mitigation techniques are expected to be one of the key radio resource management functions. In this paper we propose and analyze a simple reuse partitioning technique (with random and coordinated resource block allocation in neighbor cells) that is able to reduce inter‐cell interference. We propose a model that is able to take into account that sessions dynamically enter and leave the system. Rigid sessions require a class‐specific fixed number of resource blocks, while elastic sessions can enter the system if a minimum number of resources are allocated to them. In this rather general setting (and using the example of a system employing frequency division for multiple access) we analyze the system performance in terms of the expected number of channel collisions, the session‐blocking probabilities, the signal‐to‐interference‐and‐noise ratio (SINR) and packet error rate performance. We present numerical results on the various trade‐offs between these measures (including the trade‐off between the reuse factor and the SINR performance) that provide insight into the behavior of multi‐channel cellular systems and help dimensionalize the parameters of a reuse partitioned system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The IEEE 802.15.4K Task Group was formed recently to address the low energy critical infrastructure monitoring networks. The aim is to collect scheduled and event data from a large number of non‐mains powered endpoints that are widely dispersed. The application requirements include reliable data transfer, energy efficiency, and long deployment lifetime. To meet the low energy critical infrastructure monitoring network requirements, we propose a multihop medium access control protocol where the scheduled or event data are routed to the coordinator through the cluster heads. The power consumption of the cluster heads is critical as they use more power than the normal endpoints. Our protocol uses the wake‐up radio approach from cluster head to cluster head communication and an efficient guaranteed time slots allocation scheme to minimize the power consumption of the cluster heads. We derive analytical expressions for the average power consumption of cluster heads as well as ordinary endpoints. The results show that our proposed protocol outperforms the IEEE 802.15.4 MAC and SCP MAC in terms of power consumption. High power efficiency is achieved in both the cluster heads and normal endpoints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An integrated multi‐beam satellite and multi‐cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter‐component interference. The objective of the proposed scheme is to mitigate this inter‐component interference by optimizing the total transmission power — the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy‐efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号