首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high‐efficiency zero‐voltage‐zero‐current‐switching DC–DC converter with ripple‐free input current is presented. In the presented converter, the ripple‐free boost cell provides ripple‐free input current and zero‐voltage switching of power switches. The resonant flyback cell provides zero‐voltage switching of power switches and zero‐current switching of the output diode. Also, it has a simple output stage. The proposed converter achieves high efficiency because of the reduction of the switching losses of the power switches and the output diode. Detailed analysis and design of the proposed converter are carried out. A prototype of the proposed converter is developed and its experimental results are presented for validation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

3.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes a zero‐voltage switching (ZVS) LLC resonant step up DC–DC converter with series‐connected primary windings of the transformer. The series resonant inverter in the proposed topology has two power switches (MOSFETs), two resonant capacitors, two resonant inductors, and only one transformer with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. Resonant capacitors and inductors along with the primary windings of the transformer form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with an interleaved half switching cycle. The secondary winding of transformer is connected to a bridge rectifier circuit to rectify the output voltage. The converter operates within a narrow frequency range below the resonance frequency to achieve ZVS, and its output power is regulated by pulse frequency modulation. The converter has lower conduction and switching losses and therefore higher efficiency. The experimental results of a 500‐W prototype of proposed converter are presented. The results confirm the good operation and performance of the converter. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

5.
This paper proposes a novel zero‐current‐switching series resonant high‐voltage DC–DC converter with reduced component count. The series resonant inverter in the proposed topology has two power switches (insulated‐gate bipolar transistors, IGBTs), two resonant capacitors, and only one high‐voltage transformer (HVT) with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. The leakage inductances of the transformer's primary windings together with the resonant capacitors form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with interleaved half switching cycle. The secondary winding of the HVT is connected to a bridge rectifier circuit to rectify the secondary voltage. The converter operates in the discontinuous conduction mode (DCM) and its output voltage is regulated by pulse frequency modulation. Therefore, all the power switches turn on and off at the zero‐current switching condition. The main features of the proposed converter are its lower core loss, lower cost, and smaller size compared to previously proposed double series resonant high voltage DC–DC converters. The experimental results of a 130‐W prototype of the proposed converter are presented. The results confirm the excellent operation and performance of the converter. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

6.
A new soft switching three‐level converter with two DC/DC circuits in the primary side and current double rectifiers in the secondary side is presented to realize the zero‐voltage switching operation, reduce the transformer secondary winding turns and the output current ripple, and lessen the voltage rating of rectifier diodes. Two DC/DC pulse‐width modulation circuits sharing same power switches with interleaved half switching cycle are adopted in the proposed converter to reduce the current rating of transformer primary windings. Two inductors and four diodes are adopted in the secondary side to achieve current double rectifier, reduce output ripple current, and decrease the transformer secondary winding turns. Based on the pulse‐width modulation scheme, the power switchers can be turned on at zero‐voltage switching operation. Laboratory experiments with a 1.44 kW prototype are provided to verify the theoretical analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a half‐bridge resonant DC/DC converter with constant output voltage is proposed, which possesses good soft‐switching characteristics. At rated operating point, the switches can operate almost without switching‐on and off losses. Further, at whole working range, both zero‐voltage‐switching mode of switches and zero‐current‐switching mode of diodes are maintained. Thus, the converter can achieve a high efficiency. Experimental results verify the low switching losses and high efficiency characteristics based on a 200 W prototype. System efficiency is as high as 96% and always above 90% when output power changes from 100% to 20%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper proposes a modular nonisolated noncoupled inductor‐based high‐voltage gain multi‐input DC‐DC converter. Despite the high‐voltage gain of the proposed topology, the average of normalized voltage stress (NVS) on its switches/diodes is low. This property leads to less loss and cost of switches/diodes. Using the same number of components, the proposed topology produces higher voltage gains, in comparison with recently presented high step‐up topologies. Also, the proposed topology utilizes less number of components (capacitors, inductors, diodes, and switches) for producing a desired voltage gain, which can reduce the size, mass, cost, complexity, and losses and improve the efficiency of converter. Continuous current of input sources is another main advantage of the proposed topology. All the abovementioned characteristics have made the proposed topology very suitable for renewable energy systems (or even hybrid/electric vehicles). Design considerations of the proposed topology have also been presented. For better evaluation, the proposed topology has been compared with some of recently presented high step‐up structures, from viewpoints of producible voltage gain, number of components, and normalized voltage stress (NVS) on switches/diodes. Finally, the prototype of 2‐input version has been experimentally implemented. Obtained experimental results confirm appropriate performance of the proposed topology.  相似文献   

9.
This paper presents an active‐clamping zero‐voltage‐switching (ZVS) isolated inverse‐SEPIC converter. The high voltage spikes when turning off the switches are eliminated. The energies stored in the parasitic elements can be recycled to achieve the ZVS of switches. Therefore, the conversion efficiency increases substantially, yet with a reduced circuit cost. Detailed analysis and design of the proposed topology are described. Experimental results are recorded for a prototype converter with a DC input voltage ranging from 130 to 180 V, an output voltage of 12 V and a rated output power of 120 W, operating at a switching frequency of 65 kHz. The average active‐mode efficiency is above 88%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes an active‐clamping flyback converter using an integrated transformer. The proposed converter is composed of two active‐clamp flyback converters. The presented converter can balance the total load current between secondary sides of two transformers so that the rectifier diode conduction loss is reduced. Also, the main switch of one converter is the auxiliary switch for the other converter, so that only two switches are required and both can achieve zero‐voltage‐switching operation. The two transformers are integrated into one magnetic core; therefore, the volume and copper loss of transformer can be reduced. Detailed analysis and design of this integrated magnetic active‐clamping flyback converter are described. Experimental results are recorded for a prototype converter with an AC input voltage ranging from 85 to 135 V, an output voltage of 24 V and an output current of 5 A, operating at a switching frequency of 100 kHz. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The output power requirement of battery charging circuits can vary in a wide range, hence making the use of conventional phase shift full bridge DC‐DC converters infeasible because of poor light load efficiency. In this paper, a new ZVS‐ZCS phase shift full bridge topology with secondary‐side active control has been presented for battery charging applications. The proposed circuit uses 2 extra switches in series with the secondary‐side rectifier diodes, operating with phase shift PWM. With the assistance of transformer's magnetizing inductance, the proposed converter maintains zero voltage switching (ZVS) of the primary‐side switches over the entire load range. The secondary‐side switches regulate the output voltage/current and perform zero current switching (ZCS) independent of the amount of load current. The proposed converter exhibits a significantly better light load efficiency as compared with the conventional phase shift full bridge DC‐DC converter. The performance of the proposed converter has been analyzed on a 1‐kW hardware prototype, and experimental results have been included.  相似文献   

14.
This paper presents a single lossless inductive snubber‐assisted ZCS‐PFM series resonant DC‐DC power converter with a high‐frequency high‐voltage transformer link for industrial‐use high‐power magnetron drive. The current flowing through the active power switches rises gradually at a turned‐on transient state with the aid of a single lossless snubber inductor, and ZCS turn‐on commutation based on overlapping current can be achieved via the wide range pulse frequency modulation control scheme. The high‐frequency high‐voltage transformer primary side resonant current always becomes continuous operation mode, by electromagnetic loose coupling design of the high‐frequency high‐voltage transformer and the magnetizing inductance of the high‐frequency high‐voltage transformer. As a result, this high‐voltage power converter circuit for the magnetron can achieve a complete zero current soft switching under the condition of broad width gate voltage signals. Furthermore, this high‐voltage DC‐DC power converter circuit can regulate the output power from zero to full over audible frequency range via the two resonant frequency circuit design. Its operating performances are evaluated and discussed on the basis of the power loss analysis simulation and the experimental results from a practical point of view. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 153(3): 79–87, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20126  相似文献   

15.
This paper proposed a novel high step‐up converter with double boost paths. The circuit uses two switches and one double‐path voltage multiplier cell to own the double boost and interleaved effects simultaneously. The voltage gain ratio of the proposed DC‐DC converter can be three times the ratio of the conventional boost converter such that the voltage stress of the switch can be lower. The high step‐up performance is in accordance with only one double‐path voltage multiplier cell. Therefore, the number of diodes and capacitors in the proposed converter can be reduced. Furthermore, the interleaved property of the proposed circuit can reduce the losses in the rectifier diode and capacitor. The prototype circuit with 24‐V input voltage, 250‐V output voltage, and 150‐W output power is experimentally realized to verify the validity and effectiveness of the proposed converter. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

17.
An active‐clamp zero‐voltage‐switching (ZVS) buck‐boost converter is proposed in this paper to improve the performance of converter in light load condition. By employing a small resonant inductor, the ZVS range of switches could be adjusted to very light load condition. Moreover, 2 clamping capacitors are added in the converter to eliminate the voltage spike on the switches during transition. The operating principle of the proposed converter is analyzed, and the optimal design guide for full range ZVS is also provided. A 60‐W output prototype is experimentally built and tested in laboratory to verify the feasibility of proposed converter. The measured results show the critical ZVS operation of power switches at 1 and 0.7‐W output power for buck and boost mode, respectively. The peak conversion efficiency is up to 92.3%.  相似文献   

18.
Bidirectional DC–DC converter with phase‐shift control is commonly used for hybrid electric vehicle and fuel‐cell vehicle applications. This converter is characterized by simple circuit topology and soft‐switching implementation without additional devices. Despite these advantages, the efficiency is poor at light load condition because of high switching and conduction losses caused by high RMS inductor current. To achieve zero‐voltage switching (ZVS) for all power MOSFETs, a constant offset inductor current is maintained to conduct the antiparallel body diodes before MOSFETs turn on. A control strategy of combining duty ratio and phase‐shift modulation is proposed to reach the constant offset current. By reaching the constant offset current, the RMS inductor current can be reduced significantly, and ZVS can be achieved in all load variation ranges, resulting in high efficiency. A 2.5‐kW prototype is implemented to verify the control scheme, and a minimum efficiency of 97.3% is achieved at light load condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
针对新能源领域对开关变换器具有宽电压增益范围的要求,提出一种多模式变频宽输出LLC变换器.该变换器原边为全桥结构,副边整流器为两级倍压结构,通过控制副边开关管的导通与截止,具有3种不同的电路模式,其增益比为1:2:4.各种模式对应不同的输出电压等级,采用变频控制方式,变换器可以实现50~430 V的宽输出电压范围.多种...  相似文献   

20.
This paper presents an interleaved soft switching converter to achieve the features of zero voltage switching (ZVS) turn‐on for power switches, zero current switching turn‐off for rectifier diodes at full load, less transformer secondary winding with full‐wave diode rectifier topology, and balance primary currents with series connection of the transformer secondary windings. Two circuit modules are adopted in the proposed circuit, and they are operated with an interleaved pulse‐width modulation. Thus, ripple currents at the input and output sides are reduced. In each module, two ZVS converters using the same switches are operated with interleaved half switching cycle. The secondary windings of transformers are connected in series in order to ensure that the primary side currents are balanced. The full‐wave diode rectifier topology is used on the output side such that the voltage stress of rectifier diodes equals output voltage, rather than being two times the output voltage as in a conventional center‐tapped rectifier topology. Laboratory experiments with a 1000‐W prototype are provided to describe the effectiveness of the proposed converter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号