首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an analytic approach for the estimation of the phase and amplitude error in series coupled LC quadrature oscillator (SC‐QO) is proposed. The analysis results show that imbalances in source voltage of coupling transistor because of mismatches between LC tanks are the main source of the phase and amplitude error in this oscillator. For compensation of the phase and amplitude error, a phase and amplitude‐tunable series coupled quadrature oscillator is designed in this paper. A phase shift generation circuit, designed using an added coupling transistor, can control the coupling transistor source voltage. The phase and amplitude error can simply be controlled and removed by tuning the phase shifter, while this correction does not have undesirable impact on phase noise. In fact, the proposed SC‐QO generates a phase shift in the output current, which reduces the resonator phase shift (RPS) and improves phase noise. The phase and amplitude tunable SC‐QO is able to correct the phase error up to ±12°, while amplitude imbalances are reduced as well. To evaluate the proposed analysis, a 4.5‐GHz CMOS SC‐QO is simulated using the practical 0.18‐μm TSMC CMOS technology with a current consumption of 2 mA at 1.8‐V supply voltage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A new current‐reuse voltage‐controlled oscillator (VCO)‐buffer with enhanced load drivability is proposed. It incorporates a PMOS‐based source follower stacked atop a NMOS‐based LC VCO to share the bias current, while preventing the voltage stress at any oscillation node from exceeding the 1.2‐V technology voltage limit. Also, ac‐coupling networks are avoided between the VCO and buffer, improving the Q of the LC tank while minimizing parasitics. With internal buffering, the VCO can directly drive up a 50‐Ω load for testing, or to withstand a large capacitive load in on‐chip local oscillator distribution, particularly suitable for multi‐band MIMO WLAN radios . The fabricated VCO‐buffer in 65‐nm CMOS measures 13.8% tuning range from 5.64 to 6.4 GHz, consumes 3.6 mW at 1.2 V and exhibits ?108.84 dBc/Hz phase noise at 1‐MHz offset. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A novel wide locking range divide‐by‐2 injection‐locked frequency divider (ILFD) is proposed in the paper and was implemented in the TSMC 0.18‐µm 1P6M CMOS process. The divide‐by‐2 ILFD is based on a cross‐coupled voltage‐controlled oscillator (VCO) with an LC resonator and injection MOSFETs with source voltage coupled from ILFD output, and the injection MOSFET mixer is biased in subthreshold region. At the drain–source bias of 0.9 V, and at the incident power of 0 dBm the locking range of the divide‐by‐2 ILFD is 6.4 GHz; from the incident frequency 3.7 GHz to 10.1 GHz, the percentage is 92.75%. The core power consumption is 16.56 mW. The die area is 0.839 × 0.566 mm2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports a novel oscillator circuit topology based on a transformer‐coupled π‐network. As a case study, the proposed oscillator topology has been designed and studied for 60 GHz applications in the frame of the emerging fifth generation wireless communications. The analytical expression of the oscillation frequency is derived and validated through circuit simulations. The root‐locus analysis shows that oscillations occur only at that resonant frequency of the LC tank. Moreover, a closed‐form expression for the quality factor (Q) of the LC tank is derived which shows the enhancement of the equivalent quality factor of the LC tank due to the transformer‐coupling. Last, a phase noise analysis is reported and the analytical expressions of phase noise due to flicker and thermal noise sources are derived and validated by the results obtained through SpectreRF simulations in the Cadence design environment with a 28 nm CMOS process design kit commercially available. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We propose a theoretical analysis of the class of quadrature VCOs (QVCOs) based on two LC‐oscillators directly coupled by means of the second harmonic. The analysis provides the conditions for the existence and stability of steady‐state quadrature oscillations and a simplified model for the phase noise (PN) transfer function with respect to a noise source in parallel to the tank. We show that the figure of merit defined as the product between PN and current equals that of the single VCO, confirming that quadrature generation is achieved by this class of QVCO without degrading that figure of merit. An analytical model for the phase quadrature error due to tank mismatches is also proposed. The validity of all analytical models is discussed against numerical simulations. A practical implementation at 3.26 GHz with ±20% tuning range in a 0.13µm CMOS technology is also presented, confirming the main theoretical findings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In conventional delay‐locked loop circuits, the charge and discharge of the charge pump result in mismatched current reflecting the size of the static phase error. The static phase error between feedback clock and reference clock is likely to be within tens or hundreds of picoseconds (ps). We thus propose an approach using digital calibration methods to reduce the charge pump current mismatch by means of the setup time of the D‐type flip flop. The setup time of D‐type flip flop is determined and duplicated to detect the phase error between the reference clock and feedback clock. It results in a very small static phase error between the reference clock and feedback clock. This paper used a 0.18 µm CMOS process design, with a reference frequency of 700 ~ 900 MHz. The active area is 0.031 mm2, and the phase error after correction is less than 5 ps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a new model for the frequency of oscillation, the oscillation amplitude and the phase‐noise of ring oscillators consisting of MOS‐current‐mode‐logic delay cells. The numerical model has been validated through circuit simulations of oscillators designed with a typical 130 nm CMOS technology. A design flow based on the proposed model and on circuit simulations is presented and applied to cells with active loads. The choice of the cell parameters that minimize phase‐noise and power consumption is addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This letter presents a method for improving the transient response of DC‐DC converters. The proposed technique replaces the conventional error amplifier with a combination of two different amplifiers to achieve a high loop gain and high slew rate. In addition, a rapid output‐voltage control circuit is employed to further reduce the recovery time. The proposed technique was applied to a four‐phase buck converter, and the chip was implemented using a 0.18‐μm CMOS process. The switching frequency of each phase was set at 2 MHz. Using a supply voltage of 2.7–5.5 V and an output voltage of 0.6–1.5 V, the regulator provided up to 2‐A load current with maximum measured recovery time of only 6.2 and 6.5 μs for increasing and decreasing load current, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Relaxation RC‐oscillators are notorious for their poor phase‐noise performance. However, there are reasons to expect a phase‐noise reduction in quadrature oscillators obtained by cross‐coupling two relaxation oscillators. We present measurements on 5 GHz oscillators, which show that in RC‐oscillators the coupling reduces both the phase‐noise and quadrature error, whereas in LC‐oscillators the coupling reduces the quadrature error, but increases the phase‐noise. A comparison using standard figures of merit indicates that quadrature RC‐oscillators may be a viable alternative to LC‐oscillators when area and cost are to be minimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A reference‐less all‐digital burst‐mode clock and data recovery circuit (CDR) is proposed in the paper. The burst‐mode CDR includes a coarse and a fine time‐to‐digital converter (TDC) with embedded phase generator. A low‐power current‐starved inverter is employed as the delay unit of the fine TDC to acquire the high measurement resolution. A calibration method to diminish the inherent delay is used to reduce the quantization error of the recovery clock. The proposed CDR is fabricated in a 65‐nm CMOS process. Experiment results show that the CDR operates from 0.9 to 1.1 Gbps and have a 13‐bit consecutive identical digits (CIDs) tolerance.  相似文献   

11.
A method for analyzing the nonlinear dynamics of the injection‐locked frequency dividers in synchronized operation mode is presented, including the stability analysis of locked states. We use a specific divide‐by‐two circuit, namely a differential LC CMOS divider with a complementary topology, as a guideline for presentation, showing that the sizing of the devices significantly affects the synchronization mechanism of the divider, which exhibits a very rich dynamical behavior. We provide closed‐form expressions to determine the amplitude and the phase in the locked state, as well as the locking range, leading to accurate results, which are validated by numerical simulations. The presented analysis of the frequency divider dynamics enables us to establish that stable locked oscillations occur on the whole locking range predicted by the well‐known Adler's equation and that these are possible also beyond that range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a novel three‐phase converter using a three‐phase series chopper. The proposed circuit is composed of three switching devices, three‐phase diode bridge, input reactors, and LC low‐pass filter. In the conventional circuit, which combines three‐phase diode bridge and boost voltage chopper, to obtain sinusoidal input current the output voltage must be two or three times larger than the maximum input line voltage. However, in the proposed circuit, the input current can be controlled to be sinusoidal also when the output voltage is the same as the maximum input line voltage. This can be achieved because in the proposed circuit the discharging current of the reactors does not flow through the voltage source. The control method of the proposed circuit is as simple as that of the conventional circuit since all three switching devices are simultaneously turned on and off. This paper discusses the theoretical analysis and the design of the proposed circuit. In addition, simulation and experimental results are reported. The proposed circuit has obtained a 93% efficiency, and 99.7% at 1.3kW load as the input power factor. © 2000 Scripta Technica, Electr Eng Jpn, 132(4): 79–88, 2000  相似文献   

13.
This letter presents a novel LC voltage controlled oscillator (VCO) supporting the high‐speed serial transmission standard of RapidIO in 0.13‐µm complementary metal‐oxide semiconductor technology. The low phase noise is achieved through several techniques including current source switching, parallel coupled negative transconductance cell, and varactor bias combination scheme. Measured results of proposed circuit show a low phase noise of ?120 dBc/Hz at 1 MHz offset from 6.25 GHz carrier and tuning range of 4.8 ~ 6.8 GHz (34.48%) while consuming 7.4 mW under the supply voltage of 1.2 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A novel fully integrated CMOS LC tank VCO is presented. The LC tanks are implemented by exploiting the active circuit ‘boot‐strapped inductor’ (BSI), which behaves like a high‐quality factor inductor. Particularly, the LC tanks have been implemented by introducing a new version of the CMOS BSI circuit, which provides better versatility and design reliability. In order to verify the effectiveness of such an approach, a case study for 5–6 GHz direct‐conversion multi‐standard WLAN transceivers is presented. The VCO has been designed in a 0.35µm standard CMOS technology. The new BSI exhibits a high‐quality factor (higher than 25 over the all frequency range) and provides a high selectivity without introducing a relevant excess of noise, for a better spectral purity and a lower phase noise (PN) of the VCO. The overall VCO circuit consumes 9 mW. The VCO produces an oscillation in the tuning range from 4.91 to 5.93 GHz (nearly equal to 19%). The circuit exhibits a PN of ?129dBc/Hz at 1 MHz of frequency offset from the central frequency (5.4 GHz) and a FOM equal to 189.5 dBc/Hz at 100 kHz and 194.1 dBc/Hz at 1 MHz of frequency offset, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This letter presents a reduced reference spur multiplying delay‐locked loop (MDLL). The static phase offset (SPO) between the reference edge and its counterpart of MDLL output is the dominant mechanism causing reference spur in the spectrum of MDLL output. SPO is mainly caused by the non‐idealities on charge pump (e.g., sink and source current mismatch) and control line (e.g., gate leakage of loop filter and voltage‐controlled delay line control circuit). With a high‐gain stage inserting between phase detector/phase frequency detector and charge pump, the equivalent SPO has been decreased by a factor equal to the gain of the gain stage. To validate the effectiveness of the proposed technique, an MDLL is implemented in TSMC CMOS 0.18 µm process. The simulation result shows that ?60.1 dBc reference spur was achieved at center frequency of 1.8 GHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The term immittance converter refers to an impedance–admittance converter. The immittance converter has an input impedance that is proportional to the admittance of the load connected across output terminals. In this converter, the output current is proportional to the input voltage and the input current is proportional to the output voltage. Consequently, it converts a constant‐voltage source into a constant‐current source and a constant‐current source into a constant‐voltage source. It is well known that the quarter wavelength transmission line shows immittance conversion characteristics. However, it has a very long line length for the switching frequency, and is not suitable for power electronics applications. We thus proposed immittance converters that consist of lumped elements L, C and show improved immittance conversion characteristics at a resonant frequency. A three‐phase constant‐current source is proposed in this paper. It is possible to realize this by a simple circuit using an immittance converter. In this paper, circuit operation, characteristic equations, and results of simulation are described. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(4): 47–54, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20078  相似文献   

17.
A novel wide locking range divide‐by‐4 injection‐locked frequency divider (ILFD) is proposed in the paper and was implemented in the TSMC 0.18 µm 1P6M CMOS process. The divide‐by‐4 ILFD uses two injection transistors in series and DC‐biased above threshold voltage and a frequency doubler to enhance the function of linear mixers. At the drain‐source bias of 0.9 V and at the incident power of 0 dBm, the locking range of the divide‐by‐4 is 2.6 GHz; from the incident frequency 12.2 to 14.8 GHz, the percentage is 19.26%. The core power consumption is 10.35 mW. The die area of ILFD is 1.026 × 0.943 mm2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A new band‐gap reference (BGR) circuit employing sub‐threshold current is proposed for low‐voltage operations. By employing the fraction of VBE and the sub‐threshold current source, the proposed BGR circuit with chip area of 0.029mm2 was fabricated in the standard 0.18µm CMOS triple‐well technology. It generates reference voltage of 170 mV with power consumption of 2.4µW at supply voltage of 1 V. The agreement between simulation and measurement shows that the variations of reference voltage are 1.3 mV for temperatures from ?20 to 100°C, and 1.1 mV per volt for supply voltage from 0.95 to 2.5 V, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A new solution to implement efficient switched‐capacitor (SC) integrators is presented. In the proposed scheme, voltage buffers are opportunely introduced in order to prevent direct connection between the output and the capacitive feedback network of the circuit that characterizes classical SC integrator topologies during the charge transfer phase. Design guidelines to optimize the settling performances of the proposed circuit are also given. To demonstrate the possible advantages of the new solution, the proposed integrator is designed in a commercial 0.35?µm CMOS technology. It is shown that compared with classical SC integrator topologies, the proposed configuration allows a significant improvement of the integrator speed to be achieved for a given power budget. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A high‐order curvature‐corrected complementary metal–oxide–semiconductor (CMOS) bandgap voltage reference (BGR), utilizing the temperature‐dependent resistor and constant current technique, is presented. Considering the process variation, a resistor trimming network is introduced in this work. The circuit is implemented in a standard 0.35‐µm CMOS process. The measurement results have confirmed that the proposed BGR operates with a supply voltage of 1.8 V, consuming 45 μW at room temperature (25 °C), and the temperature coefficient of the output voltage reference is about 5.5 ppm/°C from −40 °C to 125 °C. The measured power supply rejection ratio is −38.8 dB at 1 kHz. The BGR is compatible with low‐voltage and low‐power circuit design when the structure of operational amplifiers and all the devices in the proposed bandgap reference are properly designed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号