首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
研究了经920 ℃空冷,300 ℃回火后不同直径贝氏体非调质钢棒料的组织和力学性能。结果表明,不同直径贝氏体钢试棒,经空冷+回火后的组织均为贝氏体铁素体和残留奥氏体,属于无碳化物贝氏体组织,ϕ30 mm以下棒料热处理后组织变化较小,直径大于ϕ50 mm棒料,心部组织有所粗化,并伴随粒状贝氏体量的增加。热处理后,随棒料直径的增加,其强度、硬度有降低的趋势。直径大于ϕ50 mm棒料的冲击吸收能量随直径的增加有降低的趋势。ϕ70 mm棒料R/2处抗拉强度为1226 MPa,心部冲击吸收能量(KV2)为61.3 J。较大直径的贝氏体非调质钢具有良好的强韧性。  相似文献   

2.
对比研究了在线淬火+回火工艺和传统调质工艺对低碳微合金化船体结构用钢组织和性能的影响,并探讨了其强韧化机制。结果表明,相对于传统调质工艺,采用在线淬火+回火工艺时,控制轧制产生的形变结构提高了在线淬火冷却过程中的相变驱动力和形核率,获得了精细的板条贝氏体组织,并且有利于形成纳米级析出相和高密度位错,从而提高了低碳微合金化钢强度,又保证了良好的低温韧性,总体性能(Rp0.2=599 MPa,KV2(-40 ℃)=272 J/cm2,A=24.5%)达到了590 MPa级船体用钢要求。  相似文献   

3.
研究了不同热处理工艺对空冷贝氏体/马氏体复相耐磨铸钢组织与性能的影响.结果表明,本试验所设计的耐磨钢经过不同的热处理工艺均得到了贝氏体/马氏体复相组织,780℃球化退火×3h,炉冷+920℃×1h,砂冷+500℃回火×1h,空冷的热处理制度可使材料获得最佳的综合性能,其冲击韧度均值为12 J/cm2,硬度值可达到51 HRC,并且耐磨性能良好.  相似文献   

4.
针对超高强钢的开发,介绍了马钢 1 200 MPa级超高强的化学成分设计及生产工艺。利用金相显微镜、扫描电镜、透射电镜、电子拉伸试验机、布氏硬度计以及湿式橡胶轮试验机等,研究了免热处理1 200 MPa级热轧超高强钢的组织及力学性能、冷弯性能、表面布氏硬度和耐磨性能。结果表明,1 200 MPa级热轧超高强钢的显微组织为马氏体+铁素体,马氏体体积分数为70%~75%,铁素体体积分数为25%~30%;其 Rp0.2≥800 MPa, Rm≥1 200 MPa, Rp0.2/Rm≤0.70, A50≥15%,表面布氏硬度不小于350HBW;90°冷弯,D=2a合格,具有高强度、高硬度、易成形的特点;同时,1 200 MPa热轧高强钢的耐磨性优异,其耐磨性分别是500、800 MPa级高强钢的2.05~2.1倍、1.38~1.39倍。  相似文献   

5.
研究了热处理工艺对20CrMn2Si2Mo耐磨钢板组织和性能的影响。结果表明:实验材料经轧制 300℃回火和轧制 920℃空冷 300℃回火态的组织由贝氏体铁素体和残余奥氏体组成,属新型贝氏体组织;轧制 920℃油冷(或水冷) 300℃回火后的组织由板条马氏体和残余奥氏体组成;与轧制态相比,轧制 300℃回火可显著提高材料的韧性,轧制及920℃奥氏体化后,分别采用不同介质冷却的试验结果表明,材料在轧制 920℃空冷 300℃回火后具有较好的综合性能。  相似文献   

6.
利用正交试验、力学性能测试及组织观察对自行设计的圆锥破碎机衬板用超高强度空冷贝-马复相铸钢的热处理工艺进行了优化。结果表明:回火温度对试验钢的强度影响最大,保温时间对试验钢的无口冲击吸收能量影响最大。试验钢的最佳热处理工艺为:900℃×1.5 h空冷+300℃×2 h回火。最佳热处理工艺下,试验钢的组织为:51.7%下贝氏体+43.4%马氏体+4.9%残留奥氏体,具有较优的综合力学性能,抗拉强度1683 MPa,规定非比例延伸强度1490 MPa、硬度51.3 HRC,无口冲击吸收能量151.4 J。  相似文献   

7.
低碳Mn系水淬贝氏体钢的组织和力学性能   总被引:1,自引:1,他引:0  
研究了第二代Mn系空冷贝氏体钢合金体系,即低碳Mn系水淬贝氏体钢,为高强结构钢调质钢开辟了一条新途径,给出了试验钢在水淬工艺下的组织和力学性能.结果表明:随着冷却速度的加快,试验钢中将依次出现粒状贝氏体/仿晶界铁素体,粒状贝氏体,粒状贝氏体/马氏体组织,马氏体组织;与传统淬火钢27SiMn相比,试验钢具有突出优良的淬透性,韧性,切削性能,可以水冷,不需要油冷;直径300 mm的圆柱淬火后可得到粒状贝氏体组织,试验钢经中低温回火后,屈服强度大幅上升,抗拉强度变化不大;在300℃回火后具有最高的屈服强度,1/2半径处,σh~900 MPa,σ0.2~630 MPa,AKU(-20℃)~60 J,屈强比约为0.7;试验钢经高温回火后,将析出粒状碳化物,冲击韧度大幅上升,AKU5~65 J.  相似文献   

8.
研究了冷却工艺对40CrMoNbVTi钢组织和性能的影响。结果表明,780 ℃淬火油冷、550 ℃回火后试样具有较高的抗拉强度和冲击吸收能量,分别为1250 MPa和78.63 J;20%聚乙二醇商用淬火液冷却后的抗拉强度为1140 MPa,冲击吸收能量为80.7 J;油冷及20%聚乙二醇淬火液冷却后组织为索氏体组织和少量的铁素体。860 ℃淬火雾冷/空冷+550 ℃回火后试样的抗拉强度分别为1010 MPa和945 MPa,冲击吸收能量分别为35.7 J及38.4 J,组织为回火索氏体或粒状贝氏体。780 ℃淬火油冷/商用淬火液冷却是较为合适的淬火冷却工艺。780 ℃淬火油冷/20%聚乙二醇淬火液冷却+550 ℃回火后冲击断裂机制为韧性断裂,860 ℃淬火雾冷/空冷550 ℃回火后冲击断裂机制为脆性断裂,增加淬火冷却速度可以改善冲击断口形貌。  相似文献   

9.
热处理对SiMn3型贝氏体高强钢组织和性能的影响   总被引:1,自引:0,他引:1  
利用光学金相、透射电镜(TEM)、扫描电镜(SEM)观察,以及拉伸、硬度、冲击等试验方法,研究了热处理对复合微合金化低碳SiMn3型贝氏体高强钢的组织和力学性能的影响,并对其组织与性能关系进行了讨论.结果表明,该钢在空冷条件下,可获得均一的粒状贝氏体组织,并具有良好的强度与韧性(σ0.2=820 MPa、σb=1118 MPa、αKU=87 J/cm^2);空冷后经200~300 ℃回火,在贝氏体铁素体(BF)基体上析出了弥散细小的ε碳化物,屈服强度、韧性提高(σ0.2=824~835 MPa、σb=1019~1085 MPa、αKU=136~140 J/cm^2);在400 ℃以上回火,粒状贝氏体组织开始逐渐分解,BF基体上析出椭球状碳化物,并使强度、韧性降低;500~600 ℃回火,产生回火脆性(σ0.2=787~790 MPa、σb=967~1002 MPa、αKU=72~75 J/cm^2).空冷后低温回火使该钢获得最佳强韧性组合.  相似文献   

10.
利用膨胀法在Gleeble-3500热模拟试验机上测定了HRB400E抗震螺纹钢的静态连续冷却转变(CCT)曲线,采用光学显微镜OM、扫描电镜SEM和显微维氏硬度仪观察和测定了不同冷却速度下钢的显微组织和硬度,分析了冷却速度对该钢相变组织与性能的影响。结果表明,当冷速在3 ℃/s以下时,试验钢中组织为铁素体和珠光体,随着冷速的提高,试验钢中珠光体含量逐渐提高,片层间距不断减小;当冷速为4~10 ℃/s时,试验钢中开始出现贝氏体组织;当冷速>10 ℃/s时,试验钢开始发生马氏体相变;并且随着冷速的提高,试验钢的硬度逐渐提高。冷却速度为2~3 ℃/s范围内,试验钢中珠光体含量、片层间距和力学性能均满足GB/T 1499.2—2018中规定,其结果与现场生产性能检验结果相符。在冷速为3 ℃/s生产的ϕ8 mm盘螺成品试样的珠光体含量和片层间距分别为47%和0.184 μm,下屈服强度ReL、抗拉强度Rm、强屈比Rm/ReL、屈标比ReL/RseL、断后伸长率A、最大力总伸长率Agt分别为440 MPa、569 MPa、1.29、1.10、27.2%和17.8%。  相似文献   

11.
研究了回火温度对经一定温度淬火后的Q890高强度钢组织和力学性能的影响。结果表明,从920℃淬火并于200~700℃回火时,随着回火温度的升高,Q890钢的淬火马氏体逐渐转变为回火马氏体、回火托氏体及回火索氏体,硬度总体呈下降趋势;600℃回火后,Q890钢的组织主要为回火托氏体,硬度为35HRC。此外,经从920℃淬火和600℃回火的5~25mm厚Q890钢板的屈服强度均大于900MPa,-40℃的冲击韧度均大于45J。  相似文献   

12.
某公司生产的42CrMo4钢风电空心主轴产品某一型号出现淬火开裂的比例较高,报废率近20%。用ARL8860直读光谱仪、MTS万能试验机、SANS冲击试验机、徕卡光学显微镜等对该产品进行一系列理化检验,并结合相关理论基础分析发现,将原淬火工艺优化为860 ℃加热后预冷至820 ℃浸水淬火,淬火水冷20 min,极大降低了产品开裂风险,为该企业解决了技术难点。860 ℃保温,预冷至820 ℃,水淬保持20 min,后经610 ℃高温回火处理,得到回火索氏体+粒状贝氏体+贝氏体铁素体条块的复相组织,性能满足抗拉强度>700 MPa,-30 ℃冲击吸收能量>40 J的要求。  相似文献   

13.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响.结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物.当5Cr5Mo2V钢在920~1030℃淬火时,随淬火温度升高硬度值增加并于1030℃达到最大值62.53 HRC,之后硬度...  相似文献   

14.
李伟  宋欣  欧阳宇  李新宇  马鑫  许继勇 《轧钢》2022,39(2):30-36
针对当前锯片用钢油淬工艺污染空气、成本较高等缺点,开发了其水淬工艺。以实际工业生产的15.3 mm厚45Mn2V锯片用钢板为研究对象,结合热模拟试验,对试验钢相变过程进行了研究。同时,结合实验室模拟和工业水淬试验,并与工业油淬进行对比,研究了45Mn2V钢板水淬条件下组织和性能变化。结果表明:采用w(C)=0.43%~0.46%、w(Mn)=1.45%~1.60%、w(V)=0.040%~0.055% 的化学成分设计,热模拟条件下45Mn2V Ac1=728 ℃、Ac3=774 ℃、Ar3=685 ℃、Ar1=633 ℃,Ms=272 ℃。当冷速不大于3 ℃/s时,试验钢板组织类型为先析铁素体+珠光体;随着冷速的增加,先析铁素体含量减少,珠光体片层间距逐渐变小,向索氏体及屈氏体组织转变;冷速不小于30 ℃/s时,基本得到全马氏体组织。随水淬温度由770 ℃提升至850 ℃,钢板硬度由55.4HRC增加至63.8HRC;回火后钢板硬度变化趋势与淬火态类似,硬度为25.4HRC~-29.3HRC;不同淬火温度下,钢板20 ℃冲击功均在30 J以下;随着淬火温度的升高,钢板冲击韧性逐渐降低;不同温度淬火并经580 ℃回火后,钢板冲击韧性大幅提高。工业生产表明:采用820 ℃水淬+580 ℃回火工艺与850 ℃油淬+550 ℃回火处理的钢板,组织均为回火索氏体,但前者残余奥氏体含量略微增加;力学性能方面,前者强度和硬度略微降低,但冲击韧性更加优异。  相似文献   

15.
基于JMatpro 9.0热力学软件对ZG45Cr5Ni2Mo耐磨钢平衡相组成与连续冷却转变的计算与分析,为该钢设计并实施了如下热处理工艺:900℃油淬,在180、300、400、500和600℃分别进行回火,保温时间为2 h,空冷。通过扫描电镜、洛氏硬度计和冲击试验机对热处理后的试验钢进行微观组织观察和力学性能检测。结果表明,随着回火温度的升高,硬度逐渐下降,冲击吸收能量整体起伏较大。试验钢在300℃回火后硬度为51.9 HRC,冲击吸收能量为48 J,具有较高硬度与良好的韧性配合。  相似文献   

16.
采用不同的回火温度(500、550、600和650 ℃)对EA4T车轴用钢进行调质热处理,使用OM、SEM、拉伸试验及冲击试验等测试分析了材料的显微组织和力学性能,研究了回火温度对EA4T钢显微组织及力学性能的影响。结果表明,随着回火温度的升高,回火组织转变为回火索氏体,EA4T钢强度有所降低,韧性及塑性提高。当回火温度升高至600 ℃以上时,EA4T钢的冲击断口形貌呈韧窝状。回火处理后,EA4T钢抗拉强度与硬度的经验公式为:Rm=2.9477V+45.59。  相似文献   

17.
研究了正火后回火温度对无碳化物贝氏体钢无缝钢管组织和性能的影响。试验结果表明,930 ℃正火后在600 ℃以下回火时,随回火温度的提高,试验材料的抗拉强度有降低的趋势,但降幅不大,强度在973~1012 MPa变化。试验材料的冲击吸收能量在300 ℃达到最大值,为72 J;400 ℃回火时,冲击吸收能量出现最低值,出现无碳化物贝氏体钢的回火脆性;回火温度超过400 ℃时,冲击吸收能量上升;300~350 ℃回火时,伸长率和断面收缩率最高。在400 ℃以下回火时,试验材料的组织由无碳化物贝氏体、块状铁素体和残留奥氏体组成;超过400 ℃回火时,组织为粒状贝氏体及块状铁素体。无碳化物贝氏体钢无缝钢管930 ℃正火,300 ℃回火时具有较佳的综合力学性能。  相似文献   

18.
采用正交试验等研究了回火温度、回火时间、回火次数及冷却方式对1Cr17Ni2不锈钢锻后回火硬度的影响。结果表明,本试验中在回火温度630~730 ℃,回火时间120~360 min,回火1~3次以及冷却方式分别为空冷、堆冷、砂冷的条件下,对1Cr17Ni2钢锻后回火硬度影响因素的主次排序为:回火次数>回火温度>回火时间>冷却方式,其中随着回火次数增加,硬度逐步下降,其余参数在试验参数范围内与硬度无明显正相关关系。在保温时间为240 min时,将回火温度升高至720 ℃,或在680 ℃下,将保温时间延长至720 min,进行一次回火,回火后空冷,硬度均高于3.5 HBS。在加热温度为680 ℃、回火时间为180~210 min,回火后空冷,回火3次可将硬度降低至3.6 HBS以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号