首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
The microstructure, mechanical properties and corrosion behavior of Mg–2 Zn–0.6 Zr alloy under the as-cast and asextruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the asextruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg–2 Zn–0.6 Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.  相似文献   

2.
The microstructures of as-cast and as-solution Mg–12Gd–2Er–1Zn–0.6Zr alloys were investigated by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), highresolution transmission electron microscopy(HRTEM)X-ray diffraction(XRD) and selected-area electron diffraction(SAED) in the present investigation. The results show that the primary eutectic phase Mg_5(Gd, Er, Zn) and some flocculent features are found in the as-cast alloy; the SAED pattern indicates that these flocculent features are the dense areas of stacking faults. The 14H-LPSO structure precipitates in the temperature range of 673–793 K, and the volume fraction of 14H-LPSO structure increases with the extension of heating time; however, there is no precipitation of 14H-LPSO structure when the temperature reaches up to 803 K. In addition, the Mg_5(Gd, Er, Zn) phase dissolves gradually along with the precipitation of 14H-LPSO structure.  相似文献   

3.
The effects of homogenization and isothermal aging treatment on the mechanical properties of Mg–12Gd–2Er–1Zn–0.6Zr(wt%) alloy were investigated. The precipitated long-period stacking order(LPSO) structure and the aging precipitation sequence of the conditioned alloys were observed and analyzed, respectively. The results indicate that the 14H-LPSO structure occurs after the homogenization treatment and the b0 phase forms after the isothermal aging process. These two independent processes could be controlled by the precipitation temperature range. The significant increase in the elongation of the as-cast alloy after homogenization treatment is attributed to the disappearance of the coarse primary Mg5(Gd, Er, Zn) phase and the presence of the 14H-LPSO structure. The precipitation sequence of the investigated alloy is a-Mg(SSS)/b00(D019)/b0(cbco)/b.Furthermore, the yield tensile strength(YTS) and ultimate tensile strength(UTS) values of the isothermal aging alloy have a great improvement, which could be attributed to the high density of the precipitated b0 phase.  相似文献   

4.
5.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

6.
The effect of quenching rate on the aging precipitation behavior and properties of Al–Zn–Mg–Cu–Zr–Er alloy was investigated. The scanning electron microscopy, transmission electron microscopy, and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy. The quench-induced η phase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate, which contributes to an increment of hardness by 24% (HV 26) compared with that of the water-quenched one. However, the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate. Meanwhile, the water-quenched alloy after peak aging also has the highest strength, elongation, and corrosion resistance, which is due to the high driving force and increased number density of aging precipitates, and the narrowed precipitate free zones.  相似文献   

7.
The microstructure evolution and strengthening mechanisms of Mg–10Gd–1Er–1Zn–0.6Zr (wt.%) alloy were focused in the view of the size parameters and volume fraction (fp) of dual phases (long period stacking ordered (LPSO) structures and β′ precipitates). Results show that two types of LPSO phases with different morphologies formed, and the morphology and size of both LPSO phases varied with the solution conditions. However, the volume fraction decreased monotonously with increasing solution temperature, which in turn raised the volume fraction of β′ phase during aging. The alloy exhibited an ultimate tensile strength of 352 MPa, a yield strength of 271 MPa, and an elongation of 3.5% after solution treatment at 500 °C for 12 h and aging at 200 °C for 114 h. In contrast to the LPSO phase, the β′ phase seems to play a more important role in enhancing the yield strength, and consequently, a decreased fLPSO/fβ′ ratio results in an increased yield strength.  相似文献   

8.
The oxidation behavior of pure Mg and Mg–Gd-Y-Zr alloy was studied in O2 at 300 °C with and without the presence of water vapor. The kinetics curves revealed improved oxidation resistance of Mg–Gd–Y–Zr alloy in O2, compared with pure Mg. However, when water vapor co-existed with oxygen, the oxidation rate of Mg–Gd–Y–Zr alloy was accelerated; whereas, the oxidation rate of pure Mg was restrained. Detailed XPS analysis of pure Mg oxidized with water vapor revealed that the reduced oxidation rate could be strongly linked with the outer Mg(OH)2 film. On the contrary, for Mg–Gd–Y–Zr alloy, an incomplete Mg(OH)2 film was present in the outer region of oxide layer, which can provide a ready pathway for water vapor transport to the inner part of the oxide film and which has little oxidation resistance to water vapor.  相似文献   

9.
10.
The multidirectional forging(MDF) process was conducted at temperature of 753 K to optimize the mechanical properties of as-homogenized Mg–13 Gd–4 Y–2 Zn–0.6 Zr alloy containing long-period stacking ordered phase. The effects of MDF passes on microstructure evolution and mechanical properties were also investigated. The results show that both the volume fraction of dynamic recrystallization(DRX) grains and mechanical properties of the deformed alloy enhanced with MDF passes increasing till seven passes. The average grain size decreased from 76 to 2.24 lm after seven passes, while the average grain size increased to 7.12 lm after nine passes. The microstructure after seven passes demonstrated randomly oriented fine DRX grains and larger basal(0001)\11"20[ Schmid factor of 0.31. The superior mechanical properties at room temperature(RT) with ultimate tensile strength(UTS) of 416 MPa and fracture elongation of 4.12% can be obtained after seven passes. The mechanical properties at RT after nine passes are inferior to those after seven passes due to the coarsening of DRX grains, which can be ascribed to the static recovery resulting from the repeated heating at the interval of MDF passes. The elevated temperature mechanical properties of the deformed alloy after seven passes and nine passes were investigated. When test temperature was below 523 K, the elevated temperature tensile yield strength and UTS after seven passes are superior to those after nine passes, while they are inferior to that after nine passes as temperature exceeds523 K.  相似文献   

11.
变形镁合金受限于成形工艺,致使其室温成形性较差并且具有较强的各向异性。通过在不同变形条件进行预变形结合退火处理能够有效弱化镁合金织构从而改善镁合金的力学性能。总结并评述了3种预变形方式结合退火处理对镁合金微观组织与力学性能的影响,并对未来的发展提出了建议。  相似文献   

12.
In this study, we investigated the effects of single-stage ageing (SSA), two-stage ageing (TSA), 2% pre-strain + single-stage ageing (P2%SSA) and 2% pre-strain + two-stage ageing (P2%TSA) on the mechanical properties of as-extruded Mg–8Gd–3Y–0.5Ag–0.5Zr alloy (E alloy). Compared with the SSA treatment, the TSA treatment increased the number density of $\beta ^{\prime}$ phase. The P2%SSA and P2%TSA treatments generated the $\gamma ^{\prime}$ phase and chain-like precipitates in addition to the $\beta ^{\prime}$ phase. The contributions of these ageing treatments to the alloy strengthening can be ranked as P2%TSA > P2%SSA > TSA > SSA, because the increments in the tensile yield strength were estimated to be 199 MPa > 148 MPa > 144 MPa > 110 MPa. Different from the traditional strengthening of $\beta ^{\prime}$ phase in the E + SSA and E + TSA alloys, the composite precipitates comprising the $\beta ^{\prime}$ phase, $\gamma ^{\prime}$ phase and chain-like precipitates in the E + P2%SSA and E + P2%TSA alloys provided better combined strengthening effect. The $\beta ^{\prime}$ phase was still dominated in the strengthening effect of the composite precipitates. Owing to the higher number density of $\beta ^{\prime}$ phase in the composite precipitates, the E + P2%TSA alloy exhibited the better mechanical performance as compared with the E + P2%SSA alloy. Finally, the E + P2%TSA alloy had the ultimate tensile strength of 452 MPa, the tensile yield strength of 401 MPa and elongation to failure of 3.3%.  相似文献   

13.
Pre-deformation before aging has been demonstrated to have a positive effect on the mechanical strength of the 7N01 alloy in our previous study, which is rather different from the general negative effects of pre-deformation on high-strength 7XXX aluminum alloys. In order to explain the strengthening mechanism relating to the positive effect, in the present study, the microstructure of the aged 7N01 alloy with different degrees of pre-deformation was investigated in detail using advanced electron microscopy techniques. Our results show that, without pre-deformation, the aged alloy is strengthened mainly by the η′ type of hardening precipitates. In contrast, with pre-deformation, the aged alloy is strengthened by the hierarchical microstructure consisting of the GP-η′ type of precipitates formed inside sub-grains, the ηp type of precipitates formed at small-angle boundaries, and the dislocation introduced by pre-deformation (residual work-hardening effect). By visualizing the distribution of the ηp precipitates through three-dimensional electron tomography, the 3D microstructures of dislocation cells are clearly revealed. Proper combinations of ηp precipitates, GP-η′ precipitates and residual dislocations in the alloy are responsible for the positive effect of pre-deformation on its mechanical properties.  相似文献   

14.
严伟林  黄锦元  陈林 《铸造技术》2012,33(7):787-789
利用多向锻造及时效处理技术加工变形铝合金,使铝合具有高强度和良好的塑性.研究结果表明,试样组织显著细化且超细的第二相微粒弥散分布,抗拉强度和硬度大幅度增加且塑性良好,抗拉强度和伸长率分别为396.3 MPa和11.08%.锻件强度和硬度大幅度提高是由于组织显著细化且超细的第二相微粒弥散分布;多次累积应变和时效处理改善晶界状态,使锻件的塑性增强.  相似文献   

15.
本文系统地研究了7050铝合金双级双峰时效微观组织对强度和硬度的影响。 结果表明,7050铝合金的双级时效出现了双峰现象。 第二峰的硬度和强度均略高于第一峰。 透射电子显微镜(TEM)观察表明,第二峰值的硬度和强度的增加是由于一定数量的n相数量的增加引起的。 此外,n相和GP区的共同作用优于GP区单独的效果。  相似文献   

16.
Due to their unique precipitation behavior, magnesium-rare earth (Mg-RE) alloys exhibit excellent strength and high thermal stability. However, owing to the negative blocking effect of precipitation on dislocation slipping, the plasticity and ductility of Mg-RE alloys become deteriorate after aging treatment. In this work, a novel strategy to improve the combination of strength and ductility by designing a laminate heterostructured Mg alloy is proposed. High-pressure torsion (HPT) processing is employed to fabricate a clean and well-bonded interface between MgGdYAg and MgAg alloys. The two alloys have huge differences in precipitation hardening, and ductility is improved due to two facts. For one thing, the density of the second phases in the MgAg alloy is much lower than that of MgGdYAg alloy; for another, the non-basal 〈c + a〉 slipping is continuously activated during deformation. Through this mechanism, the uniform elongation of the heterostructured MgAg/MgGdYAg/MgAg alloy is improved to 7.1%.  相似文献   

17.
Mg-2Al-1.2Ca-0.2Mn(at%)-based alloys with Ce-rich mischmetal(MM) substitution of 0–0.6 at% for Ca were hot extruded at 400 °C. The effect of MM substitution on the microstructure and mechanical properties of the extruded alloys was investigated. The as-cast Mg-2Al-1.2Ca-0.2Mn alloy is mainly composed of a-Mg, Mg_2Ca and(Mg,Al)_2Ca phases and Al_8Mn_5 precipitates, whereas the substitution of MM brings about the formation of Al_(11)MM_3, Al_2MM phases and Al_(10)MM_2Mn_7 particles with the absence of (Mg,Al)_2Ca phase. The volume fraction of MM-containing phases increases with increasing MM contents. All of the extruded alloys exhibit bimodal microstructure comprising fine dynamically recrystallized grains with almost random orientation and coarse deformed grains with strong basal texture. Dense nanosized planar Al_2Ca and spherical Al–Mn phases precipitate inside the deformed grains. High tensile yield strengths of~ 350 MPa and moderate elongations to failure of 12% are obtained in all extruded alloys; the MM substitution induces negligible difference in the tensile properties at ambient temperature, while the highest MM substitution improves the strength at 180 °C due to the better thermal stability of the fragmented MM-containing phases.  相似文献   

18.
本文研究了固溶处理后预变形对Ti-6Al-4V合金时效行为和机械性能的影响。结果显示在940 °C 和 955 °C固溶处理后进行预变形,可以提高时效过程中第二相α的析出。在940 °C固溶处理后,随着预变形量的增加,时效处理后第二相α含量增加,α相尺寸减小,合金的强度和硬度增加。在时效处理之前进行预变形可以明显提高合金的拉伸强度和硬度,也能同时保持比较好的韧性。相对固溶温度为940 °C来说, Ti-6Al-4V合金在955 °C固溶处理后进行预变形,对于提高合金的强度和硬度的效果不显著。本文采用扫描电镜对不同预变形和时效处理后的合金断口形貌进行了分析。  相似文献   

19.
利用真空电弧熔炼设备制备了新型TiZrHfNbSc难熔高熵合金,利用XRD、SEM、DSC等方法分析了合金的显微组织,利用显微硬度计、微控电子万能试验机测定了合金的硬度及力学性能。研究结果表明:TiZrHfNbSc难熔高熵合金为单一无序的BCC固溶体结构,晶格常数a=3.443?,合金密度约为7.16g/cm3;合金的维氏显微硬度约380,屈服强度σ0.2=650MPa,压缩变形率达到60%以上,合金的强化机制为固溶强化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号