首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对不同的连续退火温度,研究了其对高强IF钢的组织、织构及力学性能的影响。结果表明:当连续退火温度为760℃时,退火板再结晶不完全,屈服强度较高,伸长率较低,应变硬化指数n值和塑性应变比r值较低,{111}织构较弱;随着退火温度的升高,拉长晶粒完全消失,退火板晶粒尺寸增大且均匀性增强,屈服强度降低,伸长率、n值和r值上升。退火温度在790℃以上时,退火板织构以γ织构为主;随着退火温度继续升高,退火板γ织构中{111}110和{111}112取向强度差减小,各向同性增强。升高连续退火温度有利于提高高强IF钢的组织均匀性、成形性能以及深冲性能。  相似文献   

2.
采用SEM、EBSD和XRD等分析手段研究了退火温度对含Ce新能源无取向电工钢组织及织构的影响。结果表明:800 ℃退火后,试验钢边部和中心部位均能观察到再结晶组织及亚晶组织,α线织构中的{112}<110>取向密度最高,γ线织构中的{111}<112>取向密度较弱,退火板存在少量η织构;830~920 ℃退火后,温度越高,再结晶越充分,α线织构取向密度下降,γ线织构取向密度增加,η织构基本消失;试验钢在950 ℃退火后发生了完全再结晶,平均晶粒尺寸为48.29 μm,γ线织构中的{111}<112>取向密度最高,为11.36。  相似文献   

3.
于雷  罗海文 《金属学报》2020,56(3):291-300
通过显微组织表征和磁性能、力学性能检测等实验,研究了含Nb高强无取向硅钢在900℃以下退火时的组织、织构、力学性能与磁性能的变化。在700~850℃范围内,随着退火温度增加,冷轧板回复并逐步发生部分再结晶,同时α织构总体趋于增强而γ织构减弱;而在900℃退火时发生完全再结晶,α织构受到抑制而γ织构显著增强。随着退火温度升高,由于回复和再结晶程度不断增强,位错密度显著降低和析出相的固溶、粗化,导致强度下降和塑性增强,高频铁损也显著降低。磁感应强度由α织构强度决定,850℃退火时,冷轧组织大部分发生再结晶,α织构最强,可以获得力学性能和磁性能的最佳匹配,此时磁感应强度B50最高为1.572 T,高频铁损P1.0/400为33.26 W/kg,屈服强度约为600 MPa,该高屈服强度主要来自位错强化、析出强化和细晶强化等综合贡献。  相似文献   

4.
通过光学显微镜、EBSD等分析技术,研究了终轧温度对443超纯铁素体不锈钢显微组织、织构、成形性能及抗表面起皱性能的影响规律。结果表明,降低终轧温度有利于促进443钢热轧退火态及冷轧退火态的再结晶,并使冷轧退火态组织更为细小均匀;降低终轧温度可有效强化冷轧退火态的γ纤维织构,是提高r值和杯突值、改善冷轧退火板成形性能、抗表面起皱性能的有效方式。  相似文献   

5.
以细晶高强IF钢为研究对象,在退火温度850℃、不同退火时间下对试验钢进行罩式退火试验。通过拉伸试验、电子背散射衍射技术(EBSD)等,研究了不同罩式退火时间对细晶高强IF钢再结晶织构和晶界特征分布的影响。结果表明:随着保温时间的延长,重位点阵晶界的出现频率先增加后减少,在40 min时达到峰值,这与晶粒度及晶粒均匀性有关,与再结晶织构强度也密切相关。晶粒尺寸适当,且均匀性好,重位点阵出现率越大,有利织构强度越高。当退火温度为850℃、保温40 min时,试验钢具有最强的γ纤维织构,最高的n、r值,和较好的晶界特征分布。  相似文献   

6.
通过拉伸试验检测了单机架可逆轧制冷轧压下率为68%低碳铝镇静钢板力学性能,用金相显微镜观察试验钢板冷轧态与退火态的纤维组织,并用X射线衍射仪测量试验钢中不同类型织构的含量.结果表明,退火温度由660℃升高至720℃,低碳铝镇静钢的屈服强度为201 ~212 MPa,抗拉强度为278 ~311MPa,屈强比为0.68 ~0.72,总伸长率为38% ~ 42%,加工硬化指数n值为0.21-0.24,而塑性应变比r值为1.25 ~1.58,|△r|值为0.39 ~0.78.退火温度的升高使得再结晶后晶粒尺寸增加和“饼型”程度加大,γ纤维织构强度增加.当退火温度升高至720℃时,再结晶晶粒尺寸不均匀,|△r|值较大,且抗拉强度明显降低.综合作用的结果是,退火温度在680 ~700℃范围时较为合适,深冲性能较好.  相似文献   

7.
采用罩式退火模拟实验分析了薄规格IF钢板的再结晶规律,在确定了再结晶温度后,研究退火温度和保温时间对0.3 mm厚IF钢微观组织和力学性能的影响.同时,通过透射电镜分析了薄规格IF钢在退火后的析出物特征.结果表明:薄规格IF钢的再结晶温度比常规IF钢低50~80℃.IF钢经700℃退火保温13h后,深冲性能优异,抗拉强度可达297.25 MPa,伸长率为42.8%,塑性应变比为2.58.退火后表现出较强的γ织构和较弱的α织构,γ纤维织构主要为{11}<110>和{111}<112>,γ织构强度可达14.0以上,{001}<110>织构强度小于2.0.在透射电镜下可观察到,在晶界和晶粒内有FeTiP团聚析出.  相似文献   

8.
系统研究了固溶前预退火温度对6111铝合金冷轧板和T4P态组织和力学性能的影响。测试了力学性能,计算了LDR值;表征了显微组织、SEM组织和XRD织构构成。结果表明:预退火温度对6111铝合金的屈服强度影响较小;经300 ℃×2 h预退火处理后,抗拉强度发生明显降低,由245 MPa降低到230 MPa;当预退火温度高于100 ℃后,伸长率呈直线下降。n值和r值均随预退火温度先升高后降低,n值在200 ℃时达到最大值0.289,r值在100 ℃时达到最大值0.958。200 ℃×2 h预退火处理后,LDR值达到最大值2.005。经300 ℃×2 h预退火处理后,T4P态基体晶粒尺寸明显长大,在60~150 μm范围。200 ℃×2 h预退火处理试样,T4P态Cube织构体积分数最高,达到了13.5%。  相似文献   

9.
水恒勇  赵爱民  汪志刚  王纯  苏岚 《轧钢》2012,29(2):8-11
研究了退火温度对高强IF钢组织性能及再结晶织构的影响。结果表明,随着退火温度的升高,铁素体晶粒长大,IF钢的抗拉强度下降,伸长率先增大后减小,r值逐渐增大;退火后表现为较强的{111}<110>和{111}<112>γ纤维织构,且强点集中在{111}<112>取向,退火温度为840℃时该两取向织构密度值均较大且相差较小。  相似文献   

10.
基于薄带连铸技术,采用单阶段冷轧和两阶段冷轧工艺分别制备了0.35 mm和0.20 mm高牌号无取向硅钢,利用EBSD、XRD等检测手段分析了无取向硅钢制备全流程的组织和织构演变。研究表明,薄带连铸制备的铸带以粗大柱状晶为主,且具有较强λ纤维织构,取向密度达到4.76,无γ织构。正火处理后部分等轴晶粒长大,织构类型没有明显变化。单阶段冷轧板以α织构为主,经退火后再结晶织构以均匀λ织构和γ织构为主,强点为{001}<120>,取向密度为5.41。两阶段冷轧板以λ织构和γ织构为主,剪切变形明显。再结晶退火后组织相对粗大,且形成了较强的Cube织构,取向密度为6.45。得益于初始有利织构的遗传,试验钢具有高磁感、较高强度优势,且铁损值达到常规流程相当水平。0.35 mm退火板B50达到1.77 T,P1.0/400为20.78 W/kg。0.20 mm退火板B50为1.70 T,P1.0/400达到13.74 W/kg,高频铁损优势明显。两种规格无取向硅钢屈服强度均超过415 MPa,伸长率超过15%。  相似文献   

11.
使用真空电弧炉熔炼出(Fe50Mn30Co10Cr10)94Al6合金,利用冷轧及在不同温度对合金进行退火,以期望得到由多尺度再结晶晶粒构成的层状结构;并对不同退火温度的样品进行拉伸性能测试。利用扫描电镜和EBSD对合金组织形貌进行表征,采用X射线衍射方法研究其相组成。结果表明:合金在铸态和冷轧后相组成未发生变化,700 ℃退火得到较好的多尺度再结晶晶粒的层状结构,其屈服强度为487 MPa,抗拉强度为708 MPa,断后伸长率为39%,表现出良好的综合力学性能。  相似文献   

12.
采用拉伸和硬度测试、显微组织及拉伸断口观察等方法研究了终轧温度及退火温度对5052铝合金板材组织及性能的影响。结果表明,未经退火时,板材表层已经发生再结晶,而中心层组织仅发生回复过程。退火处理后,随退火温度的升高,合金板材的强度、硬度下降,而伸长率增加。5052铝合金终轧温度不低于330 ℃时,可在后续的冷加工获得较为均匀的组织,经400~500 ℃退火可获得综合性能较为优异(Rm≥175 MPa、Rp0.2≥65 MPa和A≥32%)的5052-O态合金板材。  相似文献   

13.
以低碳高强钢冷轧钢带为研究对象,利用光学显微镜、场发射扫描电镜、全自动拉伸试验机等设备对试验钢进行组织观察和性能测试.结果表明:试验钢带采用520~580℃退火后,铁素体晶粒形态变化较小,呈变形纤维状,组织中分布的渗碳体数量较少,其屈服强度、抗拉强度变化较小,屈强比维持在0.9以上,伸长率为1%左右;采用610~700...  相似文献   

14.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。  相似文献   

15.
康华伟  尹翠兰 《轧钢》2022,39(4):117-121
采用低成本的合金成分设计体系,通过连铸连轧和酸轧工序,以及低温退火的连续热镀锌生产工艺,成功开发了0.3~2.5 mm厚570 MPa级高强度热镀锌结构带钢。热连轧精轧出口温度为870 ℃,采取前段层流冷却,卷取温度为600 ℃,热镀锌工艺采用均热温度为605 ℃的不完全退火工艺;产品屈服强度Rp0.2为592~619 MPa,抗拉强度Rm为609~638 MPa,伸长率A50为6.5%~15%,组织性能均满足标准及用户要求,实现了批量稳定的工业化试制生产。  相似文献   

16.
利用场发射扫描电镜、电子背散射衍射技术、X射线衍射仪及电子万能试验机等对Fe-8Mn-xAl-0.2C(x=0, 3)冷轧中锰钢的微观组织与性能进行了研究。结果表明,Al的添加使奥氏体化温度明显升高。经高温临界区退火后得到了等轴的奥氏体与铁素体双相组织。添加Al提高了奥氏体的稳定性,影响了试验钢变形过程中的应变硬化行为,材料塑性得到改善。Fe-8Mn-0.2C冷轧试验钢在625℃退火获得了最优综合力学性能,抗拉强度为1220 MPa,伸长率为44%,强塑积为54 GPa·%;Fe-8Mn-3Al-0.2C冷轧试验钢在710℃退火获得了最优综合力学性能,抗拉强度为970 MPa,伸长率为58%,强塑积为56 GPa·%。此外,Al的添加扩大了试验钢获得优异力学性能的退火温度范围。  相似文献   

17.
以Ti6Al4V球形粉末为原料,利用激光选区熔化成形方法制备了Ti6Al4V合金试样,采用光学显微镜、扫描电镜及力学性能测试等手段,研究了退火工艺对Ti6Al4V合金室温力学性能及组织的影响规律。结果表明: SLM成形沉积态Ti6Al4V合金室温抗拉强度超过1200 MPa,而平均断后伸长率仅为4.0%;在650 ℃下进行真空退火处理,合金的抗拉强度仍保持在1200 MPa左右,规定塑性延伸强度Rp0.2高于1150 MPa,但试样的断后伸长率<10%;而在750及800 ℃下进行真空退火处理,合金试样的抗拉强度降至1100 MPa左右,规定塑性延伸强度高于1050 MPa,伸长率达到甚至超过10%,材料的综合强韧性得到明显提升。随着真空退火加热温度和保温时间的增加,SLM成形Ti6Al4V合金原始β晶界逐渐变模糊,晶粒趋向于等轴化。与此同时,快速冷却转变的α′针状马氏体未出现明显地粗化。  相似文献   

18.
采用显微组织观察和力学性能测试等方法研究了退火工艺参数对增材制造TC18钛合金力学性能和组织的影响。结果表明,增材制造TC18钛合金试块宏观形貌平整,表面没有裂纹等缺陷,表面呈均匀的银白色。试样经600 ℃退火保温2 h后的各项力学性能均满足GJB 2744A—2007指标要求,其规定塑性延伸强度为1036 MPa,抗拉强度为1084 MPa,断后伸长率为9.8%,断面收缩率为30%。增材制造TC18钛合金的组织为典型的柱状晶组织,粗大的β相柱状晶粒内为细长的针状α相及编织细密的α+β相板条组织;随着退火温度的升高,β相柱状晶内的针状α相逐渐粗化。  相似文献   

19.
多向锻造7075铝合金的结构和性能   总被引:2,自引:0,他引:2  
在440℃经多向锻造加工成7075铝合金锻件。研究了锻件的显微组织和力学性能随退火温度和T73回火的变化,TEM和SEM用于分析锻件的晶粒和第二相形态。多向和大变形锻造产生平均晶粒尺寸1.8μm的完全再结晶组织。390℃-450℃退火使晶粒长大到3μm,但位错和第二相分布没有明显改变,这时锻件展现出较低强度和较高延性。T73回火使锻件屈服强度和拉伸强度分别提高280%和210%,而延性同退火样相比并无明显下降,断裂韧性达到51MPam^1/2,可以认为这是沉淀强化的贡献。  相似文献   

20.
利用光学显微镜、扫描电镜、电子万能拉伸机和EBSD、XRD分析技术研究了中锰TRIP钢热轧后不同退火温度对组织和性能的影响。结果表明,经过热轧后,组织中有δ-铁素体条带、马氏体和残留奥氏体。当退火温度从600 ℃增加到900 ℃时,屈服强度由610.3 MPa下降到496.7 MPa,抗拉强度从757.3 MPa下降至630.4 MPa。热轧试验钢在700 ℃退火时伸长率最大,为44.9%。从整体上看,当热轧试验钢在700 ℃退火后综合力学性能最优,强塑积最高,为33.8 GPa·%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号