首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用声学计算软件Virtual.Lab Acoustics对复杂的小型汽油发电机组消声器的内部声场进行数值计算,得到消声器的传递损失,与消声器各腔体的传递损失进行对比,找出消声器传递损失特征与各腔体关系,针对排气噪声提出传递损失改进目标,优化消声器结构参数,提高了消声器的消声性能。该方法为消声器设计改进提供了较好的参考。  相似文献   

2.
本文结合有限元声学分析软件Virtual Lab,分析不同结构参数对吸气消声器传递损失的影响,系统总结冰箱压缩机吸气消声器的仿真分析与优化设计,并对某型号消声器消声性能较差频段进行优化设计。  相似文献   

3.
为了探究柴油发电机排气消声器的声学性能,以某型针对其排气噪声过大设计的扩张室消声器为例,应用Virtual.Lab软件对其进行了仿真分析。首先分析了扩张室消声器的结构模态,并对其结构及施加的约束进行了优化;分析优化后的结构模态,得出优化后模型前五阶结构模态频率明显升高,成功避开了排气噪声基频。其次分析了优化后消声器内部气流速度和声固耦合效应对优化后模型传声损失的影响,结果表明:经计算所得的消声器内部气流平均速度对于消声器传声损失的影响甚微;声固耦合效应使得消声器的传声损失普遍降低,在其通过频率处变为负值,在其结构模态频率处发生突变。  相似文献   

4.
对于氢燃料电池汽车发动机排气噪声的机理研究,设计了一种新型的抗性排气消声器。并且运用声学软件LMS Virtual.lab中的有限元法对传递损失进行了仿真计算,并对该消声器实物在无气流状态下的声学性能进行了试验研究,并且对数据进行了处理。理论与实验结果均表明,在氢燃料电池车需要考虑的频带内,设计的消音器的传递损失可达35dB(A)。  相似文献   

5.
针对消声器参数设计和优化问题,利用Virtual.Lab和Fluent仿真计算消声器的声学传递损失、阻力损失。分析腔数变化的条件下,消声器容积、扩张比、腔长的变化对传递损失和阻力损失的影响。结果表明消声器腔数增加会对消声性能有明显改善,侧重考虑腔长和扩张比的消声器消声效果最好;腔数相同的消声器阻力损失相差不大。以某内燃机厂生产的单缸汽油机消声器为例,运用声学有限元软件和CFD软件计算其传递损失和阻力损失,分析原设计消声器的不足,加以改进,提高了其声学性能。并利用噪声分离法,验证了模型的正确性,为消声器设计和改进提供了一定依据。  相似文献   

6.
抗性消声器的声学性能与空气动力学性能互相制约,为了提高抗性消声器的空气动力学性能,采用CFD法对添加了分流管的单腔体及多腔体扩张式消声器进行阻力损失分析。对比不同结构因素对阻力损失和传递损失的影响,结果表明:气体在扩张腔中分流可以起到降低阻力损失的作用;对于分流管单腔体消声器空气动力性有所提升但声学性能有所降低;对于分流管双腔体消声器空气动力性和声学性能均有所提升。此外采用CFD+Virtual.Lab联合仿真方法对各个结构的偶极子气动噪声进行分析,结果表明消声器复杂的内部结构在提升空气动力性的同时会增大气动噪声。  相似文献   

7.
针对某款发动机排气系统消声器建立其结构模型与内部流体域模型,,利用有限体积法对内部流场的压力损失,速度矢量,湍动能等参数进行分析。以CFD计算结果作为声场分析的边界条件,应用声学软件Virtual.Lab进行气动声学计算,分析各频率下主消声器气动噪声分布情况。提出结构优化设计建议。  相似文献   

8.
在生产中,排气噪声是干式真空泵最主要的噪声源之一,为了达到降低某新型干式真空泵排气噪声的目的,决定在真空泵排气口处加装阻抗复合式消声器。在消声器基本设计理论的基础上,通过对某新型干式真空泵进行噪声测试,对噪声原始数据进行分析,根据企业实际情况与需求进行消声器结构的初步设计,利用三维画图软件设计出消声器的三维模型,再利用LMS Virtual.Lab软件对设计出的复合消声器进行声学有限元计算和消声器性能仿真实验,仿真分析结果表明该消声器能够满足设计要求。  相似文献   

9.
针对小型柴油机噪声大的问题,设计了一款消声器,并对其进行三维实体建模,然后通过Fluent流体仿真软件对消声器进行有限元分析,仿真了此款消声器的各项工作性能,最后用Virtual.Lab软件仿真得到其传递损失曲线,得到其在不同频率下的消声量,仿真结果证明此款消声器各个参数均满足设计要求。  相似文献   

10.
基于LMS Virtual.Lab Acoustics的抗性消声器性能分析研究   总被引:1,自引:0,他引:1  
运用声学有限元软件LMS Virtual.Lab中的Acoustics模块对具有内插管的抗性消声器内部声场进行有限元分析。通过划分消声器有限元网格、定义声学网格、前处理等一系列步骤对消声器的传递损失进行了理论计算,并且对比相关的有限元分析软件及实验结果,验证了声学有限元软件计算结果的准确性。为消音器的设计优化提供了理论基础。  相似文献   

11.
为有效降低某汽车的排气噪声,以其消声器为研究对象,运用有限元前处理软件Hypermesh建立了消声器流场与声场模型,基于有限体积法分析了消声器内部流场特征,获得声场计算的温度、流速等边界条件,运用LMS.Sysnoise计算消声器声学性能,分析了传递损失频率特性,为该消声器的改进与优化设计提供了依据。  相似文献   

12.
以某款排气消声器为例,将美国GTI公司研发的GT—POWER引入,分析了排气消声器的消声性能。优化可先测试出不理想的频率段,利用GT—POWER模拟分析消声器的传递损失,对比未达标频率段与消声器的传递损失,即可针对性地修改消声器内部结构,通过试验测试,验证排气噪声是否达标。  相似文献   

13.
研究了催化器结构对消声器性能的影响,在催化器内加入细插入管建立新催化器模型来模拟催化器的内噪声传递及损失,分析并对比了安装与未安装催化器的消声器的噪声传递损失,运用GT-Power软件建立摩托车发动机工作过程与带催化器的消声器的耦合仿真模型,得到消声器在发动机各转速下的插入损失和压力损失。分析结果显示,消声器在中低频段消声效果较好,在中高频段消声效果较差。根据仿真和试验结果对消声器结构进行改进,改进后的消声器在发动机各转速下消声效果得到改善,插入损失增加3~5dB,仿真结果与试验结果吻合良好。  相似文献   

14.
针对某型三轮摩托车加速行驶噪声超过国家标准限值,基于声波声压、阶次分析等理论,运用频谱分析、阵列声压测量以及声功率分析,对车辆主要噪声源进行了识别,确定排气系统为主要噪声源,排气消声器辐射噪声在中、低频和高频段贡献相当,将吸声材料运用到摩托车覆盖件上,进一步验证了排气消声器为主要噪声源,并取得了一定的降噪效果。  相似文献   

15.
利用基于三维声波波动方程的有限元软件ANSYS对设计的某型重型卡车排气消声器进行声学仿真分析,计算得到其在(0~2000)Hz各频率上的声压等值线图,并计算得到传递损失曲线。将消声器性能测试所得结果与仿真结果相比较,发现在分析频段内消声量能较好的吻合,证明该方法是高效可行的,能较准确地预测消声器性能。相对传统的经验类比法和传递矩阵法,在设计理论和计算方法上都有很大提高,能够有效减少消声器基于一维平面波理论设计所带来的误差,对企业实际生产具有重要意义。  相似文献   

16.
对冰箱压缩机的进气消声器进行了实验及数值计算研究。以声波分解法为理论指导,搭建了消声器传递损失测试实验平台,测量进气消声器的传递损失。进而运用有限元方法,利用声学软件LMS Virtual.Lab对实验用消声器的传递损失进行数值计算,并与实验结果对比。结果表明:实验值与数值计算值吻合较好,数值模拟的准确性得到验证。  相似文献   

17.
基于正交试验设计的消声器结构改进   总被引:1,自引:0,他引:1  
赵诚  王国权 《汽车零部件》2012,(12):70-72,76
利用正交试验设计方法对某重型卡车排气消声器进行结构优化,运用正交表得到包含消声器腔体内进出口管尺寸、共振腔体积、穿孔率等多因素设计方案;结合消声器的工作状态,以消声器1/3频程的第16个频段的传递损失总和作为评价目标;运用数值分析方法计算并得到各组相应评价指标.分析了各因素对消声器消声性能的影响规律,在不改变消声器外部尺寸的前提下,对消声器的内部结构进行优化,使消声器的性能得到提高,为消声器的设计和优化提供依据.  相似文献   

18.
利用Virtual. Lab Acoustic声学仿真软件,采用声学有限元法对旋片式真空泵排气过程中的气动噪声进行仿真,得到了在0~5000 Hz频率范围内的排气噪声的相关分布特征。同时,为研究旋片式真空泵排气空间内不同部位对排气噪声的贡献量,在模型中选择5个对噪声影响较大部位的声压级频率响应曲线进行分析,为探究降低旋片式真空泵的排气噪声的途径提供了重要参考,对同类真空泵噪声问题处理也有重要的参考价值。  相似文献   

19.
针对某精密行星齿轮减速器的振动噪声问题,通过Romax Designer软件建立刚柔耦合动力学模型;并对减速器箱体进行模态分析,提取箱体的前六阶约束模态振型和固有频率,确定产生噪声的共振频率点;同时分析了齿轮传动误差、齿轮时变啮合刚度等激励的特性。提出通过齿轮修形降低减速器内部动态激励进而减小振动和噪声的方法,并使用LMS Virtual.lab软件对减速器进行声学响应求解。仿真结果表明,优化后减速器的振动和噪声明显降低;最后搭建了行星齿轮减速器试验台,实测噪声与仿真结果基本吻合,验证了该方法的合理性。  相似文献   

20.
采用SolidWorks软件建立消声器三维实体模型,应用Fluent软件对消声器内部速度流场、压力流场及湍动能的分布情况进行数值模拟分析。根据分析结果对消声器进行优化设计,以降低消声器内部的涡流强度,减少排气过程的压力损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号