首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过实验研究了深冷处理过程中的最低处理温度对9%Ni钢力学性能和逆转奥氏体含量的影响。采用了不同的深冷处理温度和保温时间,并与9%Ni钢新发展起来的热处理工艺淬火、亚稳淬火、回火(QLT)相结合。结果表明,-80℃和-110℃的冷处理对9%Ni钢的力学性能和逆转奥氏体含量没有明显影响。然而,-140℃保温24小时的深冷处理能够提高9%Ni钢的冲击韧性,其机理主要在于深冷处理使得块状的逆转奥氏体转变为条状。此外,-140℃深冷处理通过等温马氏体转变值得逆转奥氏体的含量减少。-196℃保温24小时深冷处理增加了逆转奥氏体的含量,同时细化了二次马氏体板条组织, 从而使得9%Ni钢的室温和低温冲击韧性均得到提高。其机理主要是由于深冷-196℃深冷处理促使了超细碳化物的析出,同时增加了组织内应力,从而为逆转奥氏体在回火过程中的形核提供了更多了形核位置。  相似文献   

2.
对超低碳7%Mn钢进行了不同温度的回火处理,测定了组织中的逆转变奥氏体含量及其在-60、-100 ℃下的冲击吸收能量,并观察了冲击断口附近的显微组织,进而讨论了逆转变奥氏体含量及稳定性对试验钢低温冲击断裂过程的影响。结果表明:逆转变奥氏体对试验钢低温韧性的影响具有两面性,一方面能够通过相变缓解裂纹尖端的应力集中,改善钢的低温韧性,另一方面,当其稳定性较低时易于在应力作用下大量发生马氏体相变,导致钢低温韧性降低。冲击断口附近产生明显塑性变形的区域都较小,表明在冲击断裂过程中难以通过大范围的TRIP效应实现韧化。  相似文献   

3.
对9Ni钢进行三种热处理工艺试验,分别为两次淬火+双相区淬火+回火(RLT)、淬火+双相区淬火+回火(QLT)、淬火+回火(QT)。采用X射线衍射仪、扫描电镜及多功能内耗仪等对不同工艺下9Ni钢的组织和低温韧性进行分析研究。结果表明,9Ni钢经QT处理后组织为马氏体+逆转奥氏体;经RLT和QLT处理后,组织中的马氏体变得细小,逆转奥氏体含量增加,并有23%左右的铁素体生成。RLT工艺下试验钢在-196 ℃下的低温冲击吸收能量最高,达到188 J,此时测得的逆转奥氏体含量也最多,为8.90%。RLT工艺下增韧归因于:晶粒细化;增加了逆转奥氏体形核点,逆转奥氏体含量增加,马氏体基体得到净化;铁素体组织粗化。  相似文献   

4.
张坤  唐荻  武会宾 《热加工工艺》2012,41(8):177-179,183
对经淬火+回火(QT)与淬火+两相区淬火+回火(QLT)工艺处理后的9Ni钢中的逆转变奥氏体含量和其对原位拉伸时裂纹形成和扩展时所起到的作用进行了观察和分析。结果表明:经QT工艺处理的钢中的逆转变奥氏体含量为2%,在裂纹扩展过程中,裂纹尖端成锐角,加剧了应力集中;经QLT处理后,钢中的逆转变奥氏体含量提高为6%,在裂纹扩展的过程中,裂纹尖端成钝角,弱化了应力集中。逆转变奥氏体并不能直接阻碍裂纹的扩展,通过提高基体的韧性,间接地阻碍裂纹的扩展,从而优化实验钢的低温韧性。  相似文献   

5.
利用OM、SEM、TEM和XRD试验方法,分析在两相区淬火+回火(QLT)工艺中,不同回火温度下7Ni钢组织形貌和逆转变奥氏体含量的变化,研究回火温度对7Ni钢低温强度和低温韧性的影响。结果表明:随着回火温度升高,7Ni钢抗拉强度逐渐提高,而低温韧性呈现先升高后降低的趋势。回火温度从560 ℃提高到620 ℃过程中,7Ni钢马氏体组织由粗大转变为均匀弥散细小,抗拉强度逐渐提高。当回火温度较低时,钢中马氏体回复不充分,析出的逆转变奥氏体量较少,低温韧性偏低。随着回火温度升高,7Ni钢逆转变奥氏体含量不断升高,但稳定性下降,大量不稳定的逆转变奥氏体在低温下发生转变,不利于钢低温韧性的改善。7Ni钢低温韧性随着回火温度升高呈现先升高后降低的趋势,并在580 ℃时获得最好的低温韧性。  相似文献   

6.
两相区淬火对10Ni5CrMo钢组织与性能的影响   总被引:2,自引:1,他引:1  
研究了10Ni5CrMo钢经调质处理和淬火 两相区淬火 回火(QLT)热处理后的组织与性能.结果表明,1ONiSCrMo钢经两相区淬火处理后,得到板条状的二次回火马氏体 铁素体的混合组织,并且在板条边界及板条内部析出逆转变奥氏体,该逆转变奥氏体与基体遵从K-S关系.10Ni5CrMo钢经QLT处理后改善了钢的回火稳定性,屈强比降低,尤其是低温韧性显著提高.随着回火温度的升高,逆转变奥氏体的含量增多.稳定的逆转变奥氏体提高了低温韧性.  相似文献   

7.
通过对试验钢组织的观察、逆转变奥氏体量的测定以及稳定性的分析,研究了C、Ni含量对9Ni钢中逆转变奥氏体形成的影响。结果表明:当Ni含量较高时,在较低温度回火后钢能够获得较多的逆转变奥氏体,但其稳定性较差,由于较高温度回火有利于Ni向奥氏体中的扩散,故逆转变奥氏体量增加且稳定性也上升;对Ni含量较低的钢,需要较高的回火温度才能获得相应含量逆转变奥氏体,C含量对逆转变奥氏体的稳定性没有显著的影响,这可能是在加热或保温过程中C集聚的区域生成了渗碳体的缘故。  相似文献   

8.
采用淬火膨胀仪模拟了9Ni钢的快速加热回火工艺,并结合显微组织观察、淬火后残留奥氏体含量的计算以及回火过程中热膨胀曲线的分析,研究了9Ni钢快速加热回火过程中组织的演变行为。结果表明:淬火终冷温度略高于M_f点时,淬火组织中存在少量的残留奥氏体,经快速加热后能够促进回火过程中逆转变奥氏体的生成;但当终冷温度过高时,残留奥氏体量大幅增加,反而会抑制逆转变奥氏体的形成;快速加热有利于马氏体的逆转变及碳原子在奥氏体中的富集,但这两种机制存在竞争关系,快速加热回火后组织中的奥氏体较少时,碳原子的富集会使其稳定性上升,反之则导致碳原子在奥氏体中的富集程度减弱,稳定性变差。  相似文献   

9.
对C-Mn-Si-Al高强钢进行了不同温度淬火+回火试验,采用SEM、XRD、拉伸试验等研究了不同温度淬火对C-Mn-Si-Al钢组织及力学性能的影响。结果表明:660~780℃不同温度淬火+回火的C-Mn-Si-Al组织主要为马氏体+铁素体+残余奥氏体。随着淬火温度的升高,C-Mn-Si-Al试验钢中奥氏体含量先增加后减少,740℃淬火+回火的C-Mn-Si-Al试验钢中奥氏体含量达到最大值,为33.5%。随着淬火温度的升高,C-Mn-Si-Al钢的强度逐渐升高,伸长率和强塑积先升高后降低,740℃淬火+回火的C-Mn-Si-Al试验钢的强塑积达到最大值15089.2 MPa·%。  相似文献   

10.
对自行设计的矿山球磨机衬板用中合金马氏体耐磨铸钢在900、950、1000、1050、1100 ℃淬火后回火,研究了淬火温度对试验钢组织和性能的影响。试验结果表明,经过淬火、回火处理后的试验钢显微组织由板条马氏体和残留奥氏体组成。当保持回火温度250 ℃不变,随着淬火温度的升高,马氏体组织先变细密后又变粗大,抗拉强度、冲击性能及残留奥氏体含量均呈现先增大后减小的趋势,在1050 ℃淬火取得最优综合力学性能:抗拉强度1623 MPa,冲击性能14.4 J,此时试验钢的强化机理为孪晶马氏体和高密度位错缠结。通过冲击磨损试验解释了试验钢在该工艺下的磨损行为与磨损机理。  相似文献   

11.
采用透射电镜(TEM)、X射线衍射分析仪(XRD)以及拉伸试验机对超高强度钢中的碳化物和金属间化合物的复合析出强化行为进行了研究。结果表明:在300℃回火时,主要析出大量的ε-碳化物,此时试验钢的强度升高,冲击性能略有降低;在430℃回火时,析出大量的粗大片状渗碳体,试验钢的强度继续提高,但冲击吸收能量迅速降至最低值;随着回火温度继续升高,渗碳体发生溶解,M_2C型碳化物、金属间化合物β-Ni Al相以及逆转变奥氏体开始在马氏体基体中开始析出,试验钢的抗拉强度和硬度值在470℃达到最大,屈服强度在490℃达到峰值。由于M_2C型碳化物、金属间化合物β-Ni Al相和薄膜状逆转变奥氏体的复合析出作用,试验钢在510℃回火5 h后,具有最佳的综合力学性能。当回火温度继续升高,M_2C型碳化物和逆转变奥氏体都发生粗化,钢的强度和冲击性能都有所降低,且经560℃回火后逆转变奥氏体含量达到最大值。  相似文献   

12.
采用SEM、XRD、TEM和Thermo-Calc软件计算等手段研究了两相区回火温度对0.02C-7Mn钢的组织和性能变化的影响。结果表明,淬火后试验钢组织以淬火马氏体为主,伴有极少量的残留奥氏体;两相区回火后,基体组织以回火马氏体为主,出现逆转变奥氏体,空冷后转变为残留奥氏体。随着回火温度的升高,残留奥氏体的含量逐渐增加,在650 ℃回火后到达峰值为18.78%;与此同时出现了6.57%的ε-马氏体。两相区回火后,试验钢的抗拉强度均有下降,但是屈服强度有不同程度的升高,这归因于回火过程中位错密度的下降以及弥散第二相的析出。另外,ε-马氏体的存在不仅迅速降低了屈服强度,而且还损害了韧性。在600 ℃回火后,试验钢具有优异的综合力学性能(横向:抗拉强度为984 MPa、屈服强度为973 MPa,-40 ℃冲击吸收能量为163 J,纵向:抗拉强度为947 MPa、屈服强度为919 MPa,-40 ℃冲击吸收能量为186 J),满足Q690用钢的力学性能需求。  相似文献   

13.
回火工艺对Aermet100超高强度钢组织与韧性的影响   总被引:2,自引:0,他引:2  
采用SEM、TEM等方法研究了不同回火温度对Aermet100超高强度钢的显微组织和韧性的影响。结果表明,Aermet100钢经885℃淬火后,在472~492℃温度范围内回火,显微组织为高位错密度的板条马氏体(板条M)和少量逆转变奥氏体(AR)。随着回火温度的升高,板条M宽度略有增加,韧化相AR的含量有所提高。高密度位错马氏体的存在使得Aermet100钢保持较高的韧性水平,而逆转奥氏体含量的增加则导致Aermet100钢的韧性显著提高。  相似文献   

14.
研究了临界区回火温度对Fe-4Mn-1.2Cr-0.3Cu-0.6Ni中锰钢组织与力学性能的影响。通过热轧后直接淬火+临界区回火的工艺制备试验钢。采用光学显微镜(OM)、电子探针显微分析仪(EPMA)的扫描功能、透射电镜(TEM)、拉伸试验及冲击试验等对轧后淬火态和回火态试验钢的显微组织及力学性能进行了表征。结果表明,试验钢热轧后淬火可获得较高位错密度的板条马氏体,经过临界区回火后获得在回火马氏体基体上分布残留奥氏体的复合组织。随着临界区回火温度的升高,试验钢的抗拉强度呈升高趋势,而屈服强度先下降后增加,伸长率的变化趋势与试验钢中的残留奥氏体含量相关,冲击性能随临界区回火温度的升高呈先升高后降低的趋势。630 ℃回火后试验钢的拉伸性能最佳,650 ℃回火后试验钢的冲击性能最佳,确定最佳临界区回火温度区间为630~650 ℃。  相似文献   

15.
研究了1050 ℃正火+550~700 ℃回火处理对00Cr13Ni5Mo超级马氏体不锈钢中厚板显微组织和力学性能的影响。结果表明,在1050 ℃正火后,随着回火温度的升高,板条状马氏体逐步分解,产生了逆变奥氏体组织,600 ℃回火时其含量最高,之后随着温度的升高逆变奥氏体的含量逐步降低;试验钢的强度、硬度及屈强比均随回火温度的升高先降低后升高。650 ℃回火时,可得到细密的回火索氏体+逆变奥氏体的复相组织,试验钢具有较低的屈强比及良好的冲击性能。  相似文献   

16.
在线热处理工艺中回火时间对9Ni钢逆转变奥氏体的体积分数和低温韧性有重要影响。用OM,SEM,XRD,EBSD,CVN等方法对不同回火保温时间样品中的逆转变奥氏体含量、分布及其低温韧性进行了研究。结果表明,逆转变奥氏体的体积分数随保温时间的延长先升高后降低,30 min时最高约为4.8%;低温冲击吸收能量(-192℃)在保温60 min时最高为132 J;低温韧性与逆转变奥氏体的体积分数及分布有关。  相似文献   

17.
利用XRD、SEM及EBSD等分析手段研究不同回火试样在低温处理后奥氏体含量以及形貌、分布位置和尺寸不同的逆转变奥氏体的变化规律,以此来探讨回火温度,奥氏体的形貌、分布位置与尺寸以及奥氏体稳定化元素的含量等对奥氏体稳定性的影响。结果表明:随着回火温度的升高,逆转变奥氏体体积分数先升高后下降,且650 ℃回火试样经过液氮浸泡后逆转变奥氏体体积分数急剧降低。逆转变奥氏体位于小角度晶界上或马氏体板条间时稳定性最高,大角度晶界上次之,位于大角度三叉晶界处的奥氏体最不稳定。在大角度三叉晶界处,逆转变奥氏体晶粒尺寸越小,其稳定性越高。逆转变奥氏体的稳定性还与其中的C、Mn与Ni等稳定化元素相关,稳定化元素的含量越高,奥氏体的稳定性越高。  相似文献   

18.
研究了两种成分的马氏体时效不锈钢。测定了钢中回火奥氏体含量与回火温度、回火时间、淬火温度的关系.两种钢经850℃淬火后回火,奥氏体含量随回火温度升高开始增加随后又下降,在610℃左右达到峰值约24%。奥氏体含量随回火时间的延长而增加,是一扩散控制过程。奥氏体含量与淬火温度有明显关系。在同一温度(580℃)回火,奥氏体含量与淬火温度之间存在最低值:两种钢各在1000℃和950℃淬火后回火,其奥氏体含量下降至零值附近。 测定了不同淬火温度、回火温度、回火时间对钢中微观应变△a/a的影响。经不同热处理后,△a/a的变化与马氏体二奥氏体相变过程有关。分析了钢的组织与力学性能之间的关系。回火奥氏体的存在使强度下降,估计10%的奥氏体使强度损失约10kg/mm~2。但较软的回火奥氏体沿板条状马氏体边界形成改善钢的韧性,使冲击韧性a_K提高。从钢的强度和韧性的配合考虑,采用适当的回火处理以产生5—10%稳定的回火奥氏体是可取的。  相似文献   

19.
研究了两种成分的马氏体时效不锈钢。测定了钢中回火奥氏体含量与回火温度、回火时间、淬火温度的关系.两种钢经850℃淬火后回火,奥氏体含量随回火温度升高开始增加随后又下降,在610℃左右达到峰值约24%。奥氏体含量随回火时间的延长而增加,是一扩散控制过程。奥氏体含量与淬火温度有明显关系。在同一温度(580℃)回火,奥氏体含量与淬火温度之间存在最低值:两种钢各在1000℃和950℃淬火后回火,其奥氏体含量下降至零值附近。测定了不同淬火温度、回火温度、回火时间对钢中微观应变△a/a的影响。经不同热处理后,△a/a的变化与马氏体二奥氏体相变过程有关。分析了钢的组织与力学性能之间的关系。回火奥氏体的存在使强度下降,估计10%的奥氏体使强度损失约10kg/mm~2。但较软的回火奥氏体沿板条状马氏体边界形成改善钢的韧性,使冲击韧性a_K提高。从钢的强度和韧性的配合考虑,采用适当的回火处理以产生5—10%稳定的回火奥氏体是可取的。  相似文献   

20.
研究了Mn和热处理工艺对中碳低合金耐磨铸钢组织和力学性能的影响。结果表明,实验钢的最佳奥氏体化温度为870℃,实验钢经不同温度淬火、低温回火后,钢的硬度变化并不显著,在46~54 HRC之间;w(Mn)1.5%时经870℃奥氏体化+等温淬火和200℃回火热处理,试验钢回火后的组织主要为回火马氏体,材料获得最佳的综合力学性能,是矿用挖掘机铲齿最好材质之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号