首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
对GE1014钢进行了热变形温度为850~1200℃、应变速率为0.01~10 s-1、应变量为0.7条件下的高温轴向压缩试验,对流变曲线进行了摩擦修正,建立了GE1014钢的热本构方程和Z参数方程,基于动态材料模型理论建立了GE1014钢的热加工图,并通过材料变形后的显微组织分析确定了热加工图的准确性和最后热变形区域。结果表明,摩擦效应在低变形温度或高应变速率条件下对GE1014钢的高温流变曲线影响显著;计算得到摩擦修正后的GE1014钢的热变形激活能为400.197 kJ·mol-1;当试验钢的真应变为0.4和0.7时,在试验条件下的高温、低应变速率区的能量耗散效率η达到最大值0.34。综合分析热加工图及试验钢的显微组织,确定了GE1014钢在变形温度为1100~1150℃、应变速率为0.1 s-1条件下能够获得均匀、细小的完全动态再结晶组织,此时GE1014钢的热加工性能最好。  相似文献   

2.
通过热压缩实验研究了GH141镍基高温合金在变形温度为1040~1160℃、应变速率为0.01~10 s-1条件下的热变形行为和组织演变,分析变形温度和应变速率对流变行为的影响,对流变应力进行摩擦、温度和应变修正补偿,用修正后的流变应力构建更加精准的本构方程并绘制热加工图,分析不同热加工区的微观组织演变以验证得到的最优热加工区。结果表明:压缩流变应力对变形温度和应变速率较为敏感,综合摩擦、温度变化和应变补偿修正的本构方程能较好地预测不同变形条件下的热压缩流变应力,结合热加工图及不同热加工区域内的微观组织演变确定最优热加工区为变形温度1130~1145℃、应变速率为0.1~5 s-1,此区域内动态再结晶完全,晶粒内部几乎不存在畸变,晶粒组织为等轴晶,且较均匀。  相似文献   

3.
采用Gleeble-3800热模拟试验机研究了热变形温度为950~1200 ℃、应变速率为 0.01~10 s-1条件下2507超级双相不锈钢的热压缩变形行为,并借助光学显微镜观察了不同变形过程中的微观组织演化。基于试验数据分析,建立2507超级双相不锈钢的流变应力本构关系及热加工图。结果表明:流变应力随着变形温度的升高和应变速率的降低而逐渐降低,在高应变速率下,流变曲线出现“类屈服平台”。试验钢的热变形激活能为414.57 kJ·mol-1,应力指数为4.18,峰值应力本构方程为ε·=3.69×1015[sinh(0.0101σ)]4.18exp-414.57RT,根据微观组织分析及热加工图确定出试验钢的最佳热加工区域为热压缩温度1060~1120 ℃,应变速率0.01~0.1 s-1。  相似文献   

4.
利用Gleeble3180热模拟试验机,在变形温度为950~1100 ℃,应变速率为0.001~1 s-1,真应变为0.7的条件下,对X12CrMoWVNbN钢进行了高温单向热压缩试验。通过不同条件下的高温流变曲线分析了变形温度和应变速率对试验钢热变形力学行为的影响。以Arrhenius方程为本构模型,建立了能够预测该钢流动应力的本构方程。基于动态材料模型和试验参数、结果,绘制了该钢不同应变量下的热加工图并结合图进行了组织分析。结果表明,流变峰值应力和稳态应力随温度降低或应变速率升高而升高;功率耗散系数随应变速率降低和变形温度的升高而增大;最优热加工区域功率耗散系数η的值都在0.4以上,且这些区域的变形组织晶粒均匀细小;0.3、0.4、0.5和0.6应变下的最优热加工区域都处于变形温度1050~1100 ℃、应变速率0.001~0.003 s-1的范围。  相似文献   

5.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

6.
为了探究0.30C-Cr-W渗氮轴承钢的最佳动态再结晶条件和热变形机理,利用Gleeble3800热模拟试验机对试验钢进行了等温热压缩模拟试验,试验变形温度为750~1050 ℃,应变速率0.01~10 s-1,变形量60%。结果表明,峰值应力随变形温度的降低和应变速率的升高而增大,在应变速率为0.01∼0.1 s-1,变形温度为950~1050 ℃时,发生明显动态再结晶;具有双曲正弦函数型的本构方程能较好地描述0.30C-Cr-W渗氮轴承钢的流变行为;0.30C-Cr-W渗氮轴承钢的形变激活能为442.022 kJ/mol。基于动态材料模型和流变应力数据建立了热加工图。通过热加工图及微观组织的观察确定了变形温度950∼1050 ℃,应变速率0.01∼0.15 s-1为最佳热变形条件;变形温度750∼950 ℃,应变速率1.2∼10 s-1为流变失稳区。  相似文献   

7.
以TA1/6061铝合金双金属为研究对象,采用Gleebe-3800热模拟试验机,在变形温度为350~500℃、应变速率为0.01~1 s-1、变形量为40%的条件下进行了单向热压缩复合试验,研究了TA1/6061铝合金双金属的热变形行为,建立了TA1/6061铝合金双金属本构方程及热加工图。结果表明,TA1/6061铝合金双金属热变形过程中的流变应力随着温度的上升和应变速率的降低而减小;基于试验数据建立的Arrhenius本构方程可以有效预测特定真应变下的真应力,其相关性系数为0.99642,热变形激活能为231434 J·mol-1;基于热加工图、SEM图像和EDS线扫描图像,确定最优热加工工艺窗口为:变形温度为482~500℃,应变速率为0.011~0.192 s-1。  相似文献   

8.
采用Gleeble-3500热模拟试验机,研究了耐热钢2Cr12Ni4Mo3VNbN在变形温度为900~1200℃、应变速率为0.01~1 s-1、变形量为0.5条件下的热压缩变形行为和微观组织演化规律。基于真应力-真应变曲线分析不同变形温度和应变速率对试验钢热变形行为的影响,采用Arrhenius双曲正弦方程构建耐热钢2Cr12Ni4Mo3VNbN的流变应力本构模型,并结合动态材料模型(DMM)绘制了热加工图。结果表明,流变峰值应力随变形温度升高或应变速率下降而降低,在应变速率为0.1 s-1时,变形温度达到1000℃后开始出现再结晶,且随变形温度升高再结晶晶粒越大;在不同温度下组织中均发现有δ铁素体,其含量随温度升高而增加。结合热加工图和微观组织分析,确定了耐热钢2Cr12Ni4Mo3VNbN的最佳热加工区域为1068~1172℃, 0.08~0.12 s-1。  相似文献   

9.
采用Thermecmastor-Z热模拟试验机研究了试验钢在800~1150 ℃、应变速率0.01~10 s-1的热压缩变形行为,并观察变形后显微组织。基于试验数据分析,确定了试验钢在奥氏体区的热变形方程,建立试验钢在0.8真应变下的热加工图。结果表明:试验钢的流变应力和峰值应变随变形温度的升高而减小;试验钢在奥氏体区的热变形激活能为385.91 kJ/mol。根据试验钢功率耗散及流变失稳判据确定最佳热加工工艺参数为热变形温度范围1050~1150 ℃和应变速率0.01~0.1 s-1。在该范围内,试验钢发生完全动态再结晶,功率耗散系数为17%~32%。  相似文献   

10.
为准确获得TC21钛合金塑性加工的变形特征和热加工条件,合理设计锻造工艺参数,利用Gleeble-3500热模拟机进行等温恒应变速率热压缩试验,研究了TC21钛合金在变形温度为830~1010℃、应变速率为0.01~10 s-1条件下的热变形行为,采用Arrhenius双曲线正弦函数推导出TC21钛合金本构方程。并基于动态材料模型(Dynamic Materials Model, DMM)建立了TC21钛合金的热加工图。结果表明,在本试验的变形条件下,该合金的流变应力随着变形温度的降低和应变速率的升高而增大。根据热加工图确定了合金的热加工安全区域为:变形温度为900~940℃、应变速率为0.01~0.05 s-1和变形温度为970~1010℃、应变速率为0.01~0.08 s-1。  相似文献   

11.
Hot processing behavior of an ultra-high-strength Fe–Ni–Co-based maraging steel was studied in temperature range of 900–1200 °C and strain rate range of 0.001–10 s~(-1). Deformation processing parameters and optimum hot working window were characterized via flow stress analysis, constitutive equation construction, hot processing map calculation and microstructure evolution, respectively. Critical strain value for dynamic recrystallization was determined through theoretical mathematical differential method: the inflection point of θ–σ and -αθ/ασ-σ curves. It was found that the flow stress increased with the decrease in deformation temperature and increase in the strain rate. The power dissipation maps in the strain range of 0.1–0.6 were entirely similar with the tendency of contour lines which implied that strain had no strong effect on the dissipation maps. Nevertheless, the instability maps showed obvious strain sensitivity with increasing strain, which was ascribed to the flow localization and instability. The optimized hot processing window of the experimental steel was obtained as 1100–1200 °C/0.001–1 s~(-1) and 1000–1100 °C/0.001–0.1 s~(-1), with the efficiency range of 20–40%. Owing to high Mo content in the experimental steel, high dynamic activation energy, Q = 439.311 kJ mol~(-1), was achieved, indicating that dynamic recrystallization was difficult to occur in the hot deformation process, which was proved via microstructure analysis under different hot deformation conditions.  相似文献   

12.
13Cr超级马氏体不锈钢热压缩变形行为与组织演变   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Gleeble-3500热模拟试验机对13Cr超级马氏体不锈钢进行单道次压缩变形试验,系统研究变形温度在950~1150 ℃、应变速率为0.001~10 s-1条件下的热变形行为。利用双曲正弦模型建立了13Cr超级马氏体不锈钢的流变应力本构方程,求得试验钢的热变形激活能为412 kJ/mol,并基于动态材料模型(DMM)理论绘制了材料的热加工图,得出材料的最佳热变形工艺参数窗口为:变形温度1032~1072 ℃,应变速率0.039~0.087 s-1。组织演变结果表明,试验钢在高变形温度和低应变速率的条件下,容易发生动态再结晶。当应变速率一定时(0.01 s-1),变形温度从950 ℃升到1050 ℃,动态再结晶的体积分数从18.7%升高到60.1%,组织的再结晶程度提高,晶粒均匀细小;当变形温度一定时(1050 ℃),随着应变速率的降低,动态再结晶的晶粒长大粗化。  相似文献   

13.
Hot deformation behavior of 0.3 C-15 Cr-1 Mo-0.5 N high nitrogen martensitic stainless steel(HNMSS) was investigated in the temperature range of 1173-1473 K and at strain rates of 0.001-10 s~(-1) using a Gleeble 3500 thermal-mechanical simulator.The true stress-strain curves of the studied HNMSS were measured and corrected to eliminate the effect of friction on the flow stress.The relationship between the flow stress and Zener-Hollomon parameter for the studied HNMSS wsa analyzed in the Arrhenius hyperbolic sine constitutive model by the law of Z=3.76×10~(15) sinh(0.004979σ_p)~(7.5022).The processing maps at different strains of the studied HNMSS were plotted,and its flow instability regions in hot working were also confirmed in combination with the microstructure examination.Moreover,the optimal hot deformation parameters of the studied HNMSS could be suggested at T=1303-1423 K and ε=5-10 s~(-1) or T=1273-1473 K and ε=0.005-0.04 s~(-1).  相似文献   

14.
设计制备了4种不同Mg/Si比并添加稀土元素Ce、Er、Zr和B的新型Al-Mg-Si合金,并研究了其显微组织与导电率及抗拉强度。然后以一种优化成分的Al-Mg-Si-RE合金为研究对象,通过 Gleeble-3500热模拟机进行热压缩试验,研究了变形温度为300~450 ℃,应变速率为0.001~1 s-1时该新型合金的热变形行为。通过试验数据构建该合金的本构方程和热加工图,通过光学显微镜研究显微组织的演变。结果表明,当Mg/Si比为1.4时,该合金具有优异的性能,该合金流变应力随着变形温度的升高而降低,随应变速率的增大而增大。计算得到该合金的热变形激活能为176.188 kJ/mol,所得本构方程对该合金的流变行为具有指导作用。由热加工图可知,该合金适宜在变形温度为300~320 ℃,应变速率为0.001~0.015 s-1或变形温度为430~450 ℃,应变速率为0.001 s-1或1 s-1附近的条件下进行热加工。  相似文献   

15.
邢晨  程亮  朱彬  陈逸 《金属热处理》2022,47(10):58-64
为研究马氏体TiAl合金的热变形行为,对Ti-42.1Al-8.3V合金进行1320 ℃油淬,得到马氏体,然后利用Gleeble-1500D热模拟试验机研究了马氏体在变形温度为1000~1150 ℃、应变速率为0.001~1 s-1下的热变形行为。利用背散射电子成像(BSE)和背散射衍射(EBSD)研究了热变形参数对TiAl合金显微组织的影响,通过分析真应力-真应变曲线,结合双曲正弦方程建立了本构方程。结果表明,马氏体TiAl合金的流变应力曲线符合动态再结晶特征,峰值应力随着变形温度的降低和应变速率的增大而增大;通过计算得到n为2.175,变形激活能Q为595.79 kJ/mol,并构建了马氏体TiAl合金的本构方程;在热变形后,TiAl合金中近等边三角形排布的马氏体转变成α2/γ片层结构。随着变形温度的升高和应变速率的减小,α2/γ片层逐步被再结晶晶粒替代,最后在变形温度为1100 ℃、应变速率为0.001 s-1条件下全部转化为等轴晶。另外,随着应变速率的降低和变形温度的升高,晶粒充分长大,逐渐粗化。  相似文献   

16.
在Gleeble-1500热模拟机上实施热压缩试验,研究2195铝锂合金在变形温度360~500 ℃,应变速率0.1~10 s-1时的热变形行为,并通过OM和EBSD研究了热变形中微观组织的演变。基于动态材料模型理论及Zener-Holloman参数,构建了2195铝锂合金的应变量为50%时的加工图及本构方程。结果表明,流变应力随变形温度降低或者应变速率的增加而提高,高温软化机制包括动态回复与动态再结晶。利用加工图及显微组织分析确定了试验参数范围内热变形过程的最佳工艺参数为480 ℃/10 s-1;发现失稳区形变组织和再结晶组织呈层状交替分布,且随着变形温度降低,形变组织层厚度增加;稳定区的微观组织具有明显的动态再结晶特征,形变组织基本消失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号