首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用BLT-C1000型激光立体成形设备制备了沉积态的TB18钛合金,然后采用OM、SEM和拉伸试验机等方法研究了不同热处理工艺对TB18钛合金显微组织和力学性能的影响。结果表明,沉积态试验合金的宏观组织以长条形β晶粒为主,晶内由亚稳β相和针状次生α相组成,且存在贯穿β晶粒的沉积层线。随着直接时效温度的升高,原始β晶粒形状变化不大,内部次生α相厚度增加,在形貌上次生α相从针状向片状转变。直接时效温度高于550 ℃时,沉积层线消失,直接固溶温度高于830 ℃时显微组织以全β晶粒组成。固溶+时效处理后,微观组织以纵横交错的细层片状α相为主。随着直接时效温度的升高,抗拉强度和屈服强度降低,伸长率增加。固溶+时效后析出次生α相,抗拉强度和屈服强度显著增加,同时伸长率下降。综合考虑,实际生产中沉积态的TB18钛合金的最佳热处理工艺为直接时效500 ℃×4 h,此时强度和伸长率均高于指标要求。  相似文献   

2.
热处理制度对Ti-B19合金强度和断裂韧性优化匹配的影响   总被引:4,自引:0,他引:4  
陈军  常辉  李辉 《金属学报》2002,38(Z1):108-111
研究了Ti-B19合金固溶和时效热处理对显微组织和机械性能的影响,优化Ti-B19合金强度和韧性的匹配.结果表明β固溶时效处理后的拉伸强度和屈服强度几乎为常数,与β晶粒尺寸关系不大,塑性随着晶粒细化而增加,断裂韧性反而减少.较高温度的固溶处理,有利于断裂韧性的提高.在相同温度固溶处理后,随着时效温度的增加,拉伸强度降低,塑性和断裂韧性增高.断裂韧性随着抗拉强度的增加而线性减少.为了获得较好的强度-塑性-韧性,可进行900-950℃β固溶和520-540℃时效.  相似文献   

3.
研究了不同冷却速率对TB17钛合金固溶态和固溶时效态的相组成、显微组织、拉伸性能和断裂韧度的影响。结果表明:TB17钛合金以不同的冷却速率进行固溶处理后,其显微组织均由残余β相以及其上分布的尺寸不一的片层状α相组成,仅发生了β→α相变,未发生β→ω相变和β→α’’等相变;随着冷却速率的降低(由水冷到炉冷),其拉伸强度呈现逐渐增加的趋势,而拉伸塑性则先降低后升高。经固溶时效处理后,TB17钛合金的显微组织均由粗片状初生α相、残余β相以及其上弥散分布的细片层状α相组成;由于固溶冷却速率不同,使得在时效过程中析出的细片层状α相的大小和形态各不相同。随着冷却速率的降低,TB17钛合金的拉伸强度呈现逐渐减小的趋势,而拉伸塑性则呈现逐渐升高的趋势,同时断裂韧度亦呈现逐渐增大的趋势,尤其是炉冷的固溶时效态合金,其断裂韧度达到了148.06 MPa·m1/2。  相似文献   

4.
采用扫描电镜观察、拉伸和断裂韧性测试研究了不同固溶冷却方式下TB15钛合金经900 ℃×2 h固溶+530 ℃×8 h时效后的力学性能、断口形貌和显微组织。结果表明,固溶冷却方式对TB15钛合金强度和塑性的影响较大,对断裂韧性的影响较小。固溶后回充0.1 MPa氩气真空气冷时,合金的综合力学性能最好,抗拉强度为1391 MPa,伸长率为7.0%,断面收缩率为13.6%,断裂韧度为70.3 MPa·m1/2。随着固溶冷却速率的增加,TB15钛合金的断裂韧度逐渐减小,但变化幅度不大。不同固溶冷却方式下,TB15钛合金经固溶时效后的次生α相数量、厚度及片层间距有所不同。与空冷相比,回充0.1 MPa氩气真空气冷的片层状次生α相数量增多,厚度略有增加,片层间距有所增大。  相似文献   

5.
固溶温度对TB8钛合金组织及性能的影响   总被引:2,自引:0,他引:2  
研究了固溶温度对TB8钛合金显微组织及力学性能的影响.结果表明,随固溶温度的升高,合金β晶粒明显长大;合金固溶态强度略有降低,塑性逐渐升高;合金固溶+时效处理后,β晶界及晶粒内部均匀弥散析出大量次生α相颗粒,强度呈上升趋势,塑性明显降低.TB8钛合金在770 ~ 830℃温度范围内固溶后,具有较高的强度和优异的塑性,经520℃时效后,综合性能优异,抗拉强度> 1300 MPa,伸长率>15%,断面收缩率>55%.  相似文献   

6.
研究了热处理工艺对原始组织为粗大β晶粒+少量细小α晶粒的紧固件用TB2钛合金棒材组织与力学性能的影响。结果表明:随着固溶温度的升高,棒材组织中α相含量逐渐减少,β晶粒尺寸明显增大,经780℃固溶后强度和塑性匹配最好;固溶+时效处理时,随着时效温度的升高,棒材组织中析出的次生α相体积分数先增加后减少,且棒材强度先升高后降低;经固溶+预拉伸变形+时效处理后,棒材组织中晶粒有一定细化,次生片状α相含量增多,抗拉强度较固溶后直接时效提高了近10%。  相似文献   

7.
研究了TC4钛合金棒材经650和700℃固溶处理及时效处理后的组织和性能变化。结果表明:对热加工态的TC4钛合金进行650℃的固溶热处理,材料的显微组织和拉伸性能变化不大。经过700℃固溶热处理,TC4钛合金棒材强度明显降低,屈服强度相对于热加工态降低77 MPa,且屈/强比明显低于普通退火。时效热处理后,合金的强度显著提高,400℃时效后抗拉强度达到1020 MPa,相对于热加工态提高53 MPa。显微组织分析表明,热加工后的TC4棒材显微组织由初生α相、次生α相以及残余β相组成。热处理过程中,残余β相中针状α相的溶解与重新析出是影响合金拉伸性能变化的主要原因。  相似文献   

8.
本文研究了具有双态组织的钛合金Ti-6Al-4V-0.55Fe(TC4-0.55Fe)在不同热处理制度(固溶时效、双重退火)和引入预拉伸对微观组织及力学性能的影响,并分析了合金显微组织与力学性能之间的联系。通过对双态组织的 TC4-0.55Fe采用固溶时效和双重退火热处理后微观组织和力学性能进行比较,发现两种热处理方式下随着时效和低温退火温度升高合金中微米级的片层α相厚度均逐渐增大、强度降低、塑性提高。固溶时效热处理下随着时效温度的升高合金屈服强度从530℃的873MPa下降到590℃的862MPa,而延伸率提高3.2%。双重退火热处理试样的屈服强度随着低温退火温度的升高逐步降低,但是延伸率相比于固溶时效有了很大提高,最好可达到23.6%。由于普通热处理对钛合金强度提升不明显,时效和低温退火温度均为590℃时,双重退火试样塑性更优于固溶时效,所以选择该试样引入预拉伸强化,对其在固溶和低温退火中间进行预拉伸。引入预拉伸后,晶粒发生了明显的变形,进行时效强化后合金组织无沉淀区(PFZ)中析出大量细小的二次α相(αs),引入预拉伸后进行时效可以在提升钛合金屈服强度的同时只降低极少的塑性,其中预拉伸形变1%的试样等轴晶含量最高,强度较引入预拉伸前提高68MPa,延伸率仅下降4%,力学性能最优。通过本文研究可知,TC4-0.55Fe钛合金在经过固溶处理后继续进行预拉伸和时效处理,可以有效提升合金的综合力学性能。  相似文献   

9.
对TC20钛合金进行不同的固溶时效处理,通过室温拉伸试验和平面应变断裂韧性试验,结合光学显微镜、扫描电镜和显微维氏硬度计等测试方法,分析了不同的固溶时效处理工艺参数对TC20钛合金显微组织、力学性能和断口形貌的影响。结果表明:当固溶温度一定时,随着时效温度的升高,合金的强度和硬度提高,塑性和韧性下降。当固溶时效工艺为950℃/0.5 h(水冷,WQ)+500℃/4 h(空冷,AC)时,合金可实现良好的强韧性匹配,此时合金的抗拉强度为1106 MPa,屈服强度为1019MPa,断裂韧性高达87.6MPa·m1/2。未经固溶时效处理的锻态TC20钛合金拉伸和紧凑拉伸(CT)试样,其断口呈现典型的韧性断裂形貌特征,而经不同固溶时效处理的试样断口主要以准解理断裂和解理断裂为主。随着时效温度的升高,拉伸试样断口表面逐渐出现二次裂纹和空洞,塑性逐渐降低,CT试样的韧窝尺寸逐渐变小变浅,断裂韧性逐渐降低。  相似文献   

10.
TB9合金属于亚稳型β钛合金,热处理强化效果明显,抗腐蚀性强、本文研究了固溶处理、固溶+时效处理对TB9合金力学性能和显微组织的影响,结果表明:经过800℃-900℃固溶处理后,TB9合金强度随固溶温度提高逐渐下降,塑性变化不明显;超过820℃固溶处理时,β晶粒尺寸迅速长大; 800℃-900℃固溶处理后对时效态TB9合金强度影响不明显;塑性随固溶温度上升明显下降,延伸率从15%降低到10%,面缩率从37.5%下降到20%以下;经过820℃/30min、WQ+520℃/8h、AC固溶时效处理后α相充分析出,合金性能稳定。  相似文献   

11.
利用光学显微镜、拉伸试验机和扫描电镜等手段研究了多次重复固溶时效处理对TB15钛合金显微组织和力学性能的影响。结果表明,随着固溶时效处理重复次数的增加,TB15钛合金的显微组织发生了较为明显的变化,次生α相合并长大,原始β晶粒晶界增厚;1次固溶时效处理后合金的综合力学性能达到最优,随着固溶时效处理重复次数的增加,合金的强度和断裂韧度均降低,伸长率和断面收缩率也急剧降低,断裂类型从韧性断裂向脆性断裂转变;相同工艺参数的重复固溶时效处理不能实现在不大幅降低强度和断裂韧度的前提下改善该合金的室温塑性。  相似文献   

12.
研究了不同固溶时效热处理制度对TB8钛合金棒材组织及性能的影响规律。结果表明,TB8钛合金棒材在890 ℃固溶热处理后可以得到单一等轴β组织,随着保温时间的延长,强度逐渐降低。经520 ℃不同时间时效处理后,β晶粒中析出大量次生α相,使得棒材强度显著增加。当时效保温时间为8 h时,TB8钛合金棒材时效强度达1286 MPa,并保留较好的塑性。推荐TB8钛合金棒材的固溶时效热处理制度为:890 ℃×30 min,WQ+520 ℃×8 h,AC。  相似文献   

13.
采用光学显微镜,扫描电镜和电子拉伸机等研究了TA15合金经两阶段强韧化退火热处理后的显微组织和性能。结果表明:采取两阶段的热处理工艺后,TA15合金的组织由约20%的初生等轴α,55%的片状α和β转变基体的组织组成;合金具有良好的塑性及较好的室温和高温强度,在975℃×1 h,WQ+850℃×2 h,AC的制度下,TA15合金的室温抗拉强度为1005 MPa,屈服强度为914 MPa,伸长率、冲击韧性分别为13%和72.2 J/cm^2。合金的冲击韧性I与次生片层α厚度t具有较好的线性关系I=26.504t+44.915,冲击断口形貌可以观察到大量的韧窝,表明合金的断裂机制以韧性断裂为主。随着第二重退火温度的升高,次生片层α厚度增加,韧窝逐渐变大,韧性增加。  相似文献   

14.
通过X射线衍射仪、光学显微镜、扫描电镜、硬度计以及万能拉伸试验机等研究了不同轧制温度及变形量对TB2钛合金显微组织、相结构以及力学性能的影响。结果表明,在600℃轧制处理后,TB2钛合金由β相和α相组成。同一轧制温度下,随着变形量的增加,晶粒被明显拉长,基体中的β晶粒部分破碎,并在晶界处出现大量再结晶晶粒。当轧制温度为600℃,变形量为60%时,合金的抗拉强度最大,可达到1360 MPa,伸长率为5.7%;而当轧制温度为600℃,变形量为40%时,合金的抗拉强度最大,可达到1270 MPa,伸长率为10.9%,综合力学性能较好。  相似文献   

15.
采用OM、SEM、XRD、维氏硬度以及力学性能测试等方法,研究了固溶时效处理对TC6合金显微组织、相结构以及力学性能的影响。结果表明:TC6合金经过900 ℃固溶处理后,合金由片层α相、针状马氏体α′相以及β相组成;而经过1000 ℃固溶处理后,合金主要由针状α′马氏体相和β相组成。对不同固溶温度下的合金样品进行时效处理,针状α′马氏体相完全分解为α相和β相。并且随着时效温度升高,β相的相对含量逐渐增大。通过对比,TC6合金经过900 ℃固溶后在500 ℃下进行时效处理后综合力学性能达到最佳,此时的抗压强度和屈服强度为2000 MPa、1061 MPa,硬度值为499 HV0.2。  相似文献   

16.
高星  张宁  丁燕  蒋波 《金属热处理》2022,47(9):12-17
采用光学显微镜、扫描电镜和电子万能试验机研究固溶时效工艺中时间参数对激光选区成形(SLM)TC4(Ti6Al4V)钛合金显微组织和力学性能的影响。结果表明,退火态的SLM成形TC4钛合金的显微组织主要由连续的晶界α相(αGB)、网篮状α相和β转变组织组成。经固溶时效处理后,试样的显微组织均呈现为网篮组织。在固溶温度为920 ℃,时效工艺为550 ℃×3 h,空冷的条件下,随着固溶时间从2 h增加为6 h,初生α相粗化明显,部分αP相的晶粒长度可达16 μm;片状α相也发生粗化,晶粒长度由5~15 μm增长至20~30 μm,连续的晶界α相(αGB)变得不连续,晶粒宽度由2.7 μm增长为4.4μm;同时,组织中出现了尺寸较大的α集束。试样的强度由1045.2 MPa增加为1156.9 MPa,断后伸长率由13.6%降低为6.7%。在时效温度为550 ℃,固溶工艺为920 ℃×2 h,水淬的条件下,随着时效时间从3 h增加为8 h,β转变组织的占比增加,初生α相的长度由40~60 μm减少为30~40 μm,晶界处连续的αGB相晶粒宽度由2.7 μm增长为4.5 μm;片状α相稍有粗化,而试样的力学性能变化不大。因此,对于SLM成形TC4钛合金而言,在920 ℃固溶温度及550 ℃时效温度下,改变固溶和时效时间参数难以获得双态组织,且对综合力学性能的提高无显著影响。  相似文献   

17.
对BT14钛合金(Ti-5.43Al-3.11Mo-1.41V)进行不同温度固溶+时效热处理,研究了固溶温度对合金的显微组织、元素分布和硬度和压缩性能的影响。结果表明,在β相转变温度以下固溶后,随固溶温度上升,初生α相含量不断减少,初生α相和基体相(α′、α″或亚稳β相)中的Al含量均增加,Mo和V含量均下降,显微硬度上升。890、940、990 ℃固溶+540 ℃×6 h时效处理后,基体相分解形成弥散细小的α+β相,起到显著的强化作用,导致显微硬度整体提高,且随着固溶温度的升高,显微硬度和压缩屈服强度提高。  相似文献   

18.
时效对热旋压TC11钛合金组织及性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用光学显微镜、透射电镜、X射线衍射仪、拉伸试验机等研究了时效对双重退火态TC11钛合金原料热旋压成型后的显微组织和力学性能的影响,并确定了最佳的时效温度范围。结果表明,与双重退火态TC11钛合金原料相比,热旋压后的抗拉强度提高了近17%,硬度提高了约8 HRC,再经560 ℃×3 h时效后,抗拉强度由1195 MPa提高至1240 MPa,硬度提升约1 HRC,综合力学性能和硬度得到进一步提高。热旋压和时效均能促进软韧相β相向强化相α相转变。300~600 ℃时效时,抗拉强度均大于1200 MPa,并在580 ℃达到最大为1242 MPa。随着温度的升高,断后伸长率有所下降并在高于580 ℃时降至8%以下。热力学计算结果表明500~560 ℃温度范围内β相向α相的转变倾向最大,在此温度范围内进行时效最为适宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号