共查询到16条相似文献,搜索用时 78 毫秒
1.
研究了920 ℃水淬+不同温度回火后1100 MPa级高强钢的显微组织和力学性能。结果表明:回火温度为250 ℃时,所得到的力学性能最佳,抗拉强度、屈服强度、硬度、断后伸长率和冲击吸收能量分别为1423 MPa、1220 MPa、446 HV5、14.2%和56 J。随回火温度的升高,抗拉强度、屈服强度、硬度值整体呈现下降的趋势,冲击吸收能量先减小后增加。回火温度为150 ℃时,组织为回火马氏体和ε碳化物,析出的ε碳化物呈细长杆状。回火温度上升到250 ℃之后,马氏体板条稍有粗化,ε碳化物长大。随回火温度继续升高,板条马氏体逐渐转变为等轴铁素体,ε碳化物也会转变为渗碳体并逐渐球化粗化。 相似文献
2.
采用OM、SEM、TEM研究了1000 MPa级高强钢在直接淬火条件下550~670℃范围内回火后的组织和性能。结果表明,在550℃至610℃之间回火时,马氏体板条开始回复,碳化物析出,试验钢组织以回火马氏体为主;在640℃至670℃之间回火时,马氏体板条开始发生再结晶,碳化物逐渐长大,试验钢组织以回火索氏体为主。采用DQ-T工艺生产1000 MPa级高强钢的最佳回火温度区间为610~640℃,此时规定塑性延伸强度为1012~1053 MPa,抗拉强度为1045~1092 MPa,塑性冲击吸收能量为38~39 J,伸长率为17%~19%,断面收缩率为40%~42%,有较好的综合力学性能。 相似文献
3.
回火温度对40CrNiMo7钢组织与性能的影响 总被引:1,自引:0,他引:1
通过显微组织观察、拉伸和冲击试验、硬度测试、冲击断口分析等研究了回火温度对40CrNiMo7钢组织与性能的影响。结果表明,40CrNiMo7钢经850℃油淬400~700℃回火后的组织均为回火索氏体+马氏体+碳化物;650℃回火时实现了优良的强韧性匹配;400℃回火时常温强度达到最大,冲击吸收能量则最低,而700℃回火时则反之;随着回火温度的升高,40CrNiMo7钢的硬度逐渐减小。随着试验温度的降低,试验钢强度逐渐升高韧性却逐渐降低,而断后伸长率和断面收缩率基本没有变化。 相似文献
4.
6.
利用显微组织观察及力学性能测试等实验方法,研究了回火温度(610~650℃)对28CrMo47V钢组织及性能的影响.研究表明:610℃回火时,28CrMo47V钢的回火组织中完全保留了马氏体针叶形态,随回火温度升高组织中马氏体针叶形态逐渐减少,并在650℃回火后完全消失,得到回火索氏体;回火温度的变化亦显著影响钢材的性能,随回火温度升高,钢材的屈服强度及抗拉强度呈明显下降趋势,而冲击韧度显著提高;630℃回火时因组织的弥散强化及细晶强化可使28CrMo47V钢达到一个优良的强韧化综合效果. 相似文献
7.
采用力学性能测试、显微组织观察、扫描电镜观察,研究回火温度对Q1100超高强钢组织和性能的影响规律。结果表明:试验钢900 ℃保温后水淬再200~300 ℃回火后,为回火板条马氏体组织;在 400 ℃和500 ℃回火后,为回火屈氏体组织;在600 ℃回火后,为回火索氏体组织。试验钢具有较高的回火稳定性,在400~600 ℃回火时,α铁素体仍保持板条马氏体的形状和位向。在200 ℃回火后,小角度晶界含量较多,阻碍微裂纹扩展,韧性较好,随着回火温度的升高,小角度晶界占比逐渐减少,在400 ℃回火后,小角度晶界占比较少,碳化物的析出恶化试验钢的韧性,发生了回火脆性,韧性最差,500 ℃和600 ℃回火后,试验钢的小角度晶界占比较400 ℃相差不明显,但试验钢回复程度较大且600 ℃回火发生部分再结晶,回火软化作用较大,韧性较高。当回火温度为200 ℃时,试验钢具有最佳的综合性能,屈服强度为1164.38 MPa,抗拉强度为1429.70 MPa,断后伸长率为14.66%,硬度为430.27 HV3,标准试样-40 ℃冲击吸收能量为92.30 J。 相似文献
8.
通过冲击、拉伸试验、光学显微镜和扫描电镜,研究了钻杆接头用37CrMnMo钢在不同回火温度下的显微组织形貌及强度和冲击性能的影响的变化规律。结果表明,37CrMnMo钢经水淬后于500~640 ℃回火后得到回火索氏体,随回火温度的上升其抗拉强度与屈服强度由平缓降低变为陡降趋势。500 ℃的回火组织中碳化物呈现层片状分布,冲击吸收能量为30.94 J;600 ℃回火后碳化物呈均匀弥散分布,冲击吸收能量为117.49 J;经过640 ℃回火后,显微组织中碳化物粗化,直接导致冲击吸收能量下降。故37CrMnMo钢试样在870 ℃淬火后于不同温度回火,碳化物的形貌对其强韧性起着关键作用。 相似文献
9.
通过光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、布氏硬度计和拉伸试验研究了一种硼含量为0.01%的耐热钢经200~650 ℃回火后的碳化物形态和分布情况,以及其对力学性能的影响。结果表明:随回火温度的升高,碳化物的平均尺寸逐渐增加,形态由低温回火时的针状逐渐转变为高温回火时的块状;耐热钢的硬度、抗拉强度和屈服强度随回火温度的升高呈现先增加后下降的趋势,伸长率由6%提高到12%;随回火温度的升高,耐热钢由脆性断裂转变为韧性断裂,断口形貌由河流花样转变为韧窝。 相似文献
10.
研究了正火后回火温度对无碳化物贝氏体钢无缝钢管组织和性能的影响。试验结果表明,930 ℃正火后在600 ℃以下回火时,随回火温度的提高,试验材料的抗拉强度有降低的趋势,但降幅不大,强度在973~1012 MPa变化。试验材料的冲击吸收能量在300 ℃达到最大值,为72 J;400 ℃回火时,冲击吸收能量出现最低值,出现无碳化物贝氏体钢的回火脆性;回火温度超过400 ℃时,冲击吸收能量上升;300~350 ℃回火时,伸长率和断面收缩率最高。在400 ℃以下回火时,试验材料的组织由无碳化物贝氏体、块状铁素体和残留奥氏体组成;超过400 ℃回火时,组织为粒状贝氏体及块状铁素体。无碳化物贝氏体钢无缝钢管930 ℃正火,300 ℃回火时具有较佳的综合力学性能。 相似文献
11.
12.
设计了一种低碳Fe-Mn-Nb-Cu-B系屈服强度690 MPa级工程机械结构用钢,利用扫描电镜(SEM)和透射电镜(TEM)等仪器研究了不同回火温度对实验钢的组织和性能的影响.结果表明:回火温度对屈服强度和抗拉强度均有较大影响,都呈现出先降低再升高再降低的规律.600℃回火时的综合力学性能较好,屈服强度比未回火时增加了145 MPa;并且屈强比和硬度随回火温度的变化趋势同抗拉强度和屈服强度的变化规律是相同的.分析认为:回火前后力学性能的变化的主要原因是与回火后有更多弥散的尺寸在20 nm以下的新的细小(Nb,Ti) (N,C)粒子析出以及发生位错的回复和M-A岛的分解有关. 相似文献
13.
对退火态高氮不锈轴承钢进行真空高压气淬并深冷后在不同温度下回火空冷处理,采用光学显微镜、X射线衍射仪、场发射环境扫描电镜、场发射透射电镜、洛氏硬度计和万能材料试验机,研究并分析了不同回火温度对高氮不锈轴承钢显微组织与力学性能的影响。结果表明:当回火温度由180 ℃升高到550 ℃时,硬度、抗拉强度及屈服强度呈现先下降后上升再迅速下降的变化趋势;试验钢降碳增氮,组织中没有粗大的共晶碳化物存在。当回火温度为500 ℃时,基体组织为回火索氏体,碳化物M23C6和氮化物Cr2N细小弥散均匀分布于基体上;在500 ℃回火时出现了二次硬化,强度和硬度达到峰值,这与碳氮化物弥散强化有关。采用1050 ℃真空气淬60 min+深冷处理(-100 ℃×2 h)+500 ℃空冷2 h回火工艺可以获得良好的综合力学性能。 相似文献
14.
采用扫描电镜、透射电镜、X射线衍射仪、显微硬度计、拉伸试验机和冲击试验机等分析手段对C61齿轮钢试样经1000 ℃淬火+回火处理后组织和碳化物的析出行为及力学性能进行了研究。结果表明,试验钢在淬火和深冷状态下,一次碳化物基本溶解,基体为板条马氏体组织,此时固溶强化作用提供了较好的强韧化基础。当回火温度为420 ℃时,析出的M3C渗碳体为其提供了较高的强度,但这种析出相的存在对冲击性能具有较大的损伤;M3C渗碳体会在482 ℃回火时溶解,10~20 nm尺寸的棒状M2C碳化物在板条马氏体内的弥散析出,提供了较高强度的同时改善了冲击性能。随着回火温度的继续升高,大量逆转变奥氏体生成,不仅有效提高冲击性能,同时强度下降也更为明显;且M2C碳化物粗化长大,第二相的强化作用降低。综合得出,试验钢在482 ℃的回火条件下能达到较好的强韧化匹配,抗拉强度和屈服强度分别为1781 MPa和1546 MPa,冲击吸收能量为97 J,硬度峰值为52 HRC。 相似文献
15.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。 相似文献