首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
金属钨是聚变反应堆中面向等离子体的最佳候选材料,辐照产生的缺陷与聚变产生的氢(H)、氦(He)相互作用,往往形成H/He气泡,严重损伤金属钨的结构,导致其热力学性能退化。然而,仅依赖于实验表征技术,尚难以系统揭示缺陷与氢、氦相互作用的物理机制。近年来,多尺度计算模拟方法为研究金属结构缺陷与H、He交互作用提供了一条重要途径。本文综述了国内外在金属钨缺陷与氢、氦相互作用计算模拟研究领域取得的最新进展,系统总结了缺陷类型、尺寸、浓度、分布以及温度等对H、He动力学行为的影响规律,建立了微观组织变化与结合能、俘获能、扩散路径、团簇结构、能量分布等之间的关系,并指出困扰该领域的关键科学技术问题以及发展趋势,为面向等离子体材料的筛选、设计与评价提供理论指导。  相似文献   

2.
钨凭借其优异的性能,已成为核聚变堆面向等离子体材料的候选材料之一。在核聚变堆运行过程中,钨将面临高热负载辐照、高氢/氦等离子体辐照和高能中子辐照。其中,钨经中子辐照后会产生嬗变元素铼,随着核聚变反应的进行,铼元素将在钨中持续产生和积累,形成嬗变产物钨铼合金。因此,钨面向等离子体材料的热力学参数和耐热负载性能会发生变化,这将关系到钨面向等离子体材料的服役性能,甚至关系到反应堆的稳定运行问题。目前,由于在实验室条件下核聚变高能中子的产生受限,故而对嬗变产物钨铼合金的研究主要基于实验室制备的钨铼合金。本文综述了现阶段钨铼合金的主要制备工艺及其热负载行为,分析了钨铼合金热负载行为中存在的问题,希望能为未来核聚变堆中钨面向等离子体材料的早日应用提供参考。  相似文献   

3.
钨铬(W-Cr)合金具有优异的物理性能,被认为是面向等离子体材料(PFM)中最有潜力的候选材料。而合金元素对辐照损伤演化过程的影响规律是钨合金优化设计的关键,深入研究溶质原子与辐照缺陷(如:空位)的相互作用有助于理解辐照损伤演化的微观物理机制。本文基于第一性原理方法,对W-Cr合金的溶质原子Cr占位、Cr与空位的相互作用及Cr含量对其影响规律进行了计算研究。发现相比于间隙位置,原子Cr更易占据置换位置,W中溶质Cr有偏聚的趋势;在辐照环境下,空位和自间隙原子均易与溶质原子Cr相结合,易加速W中富Cr相的析出;随Cr含量的增加,体系的形成能线性增加,因而结构越发不稳定。研究还发现超胞中单原子Cr的第二近邻空位的形成能最低,且低于W的本征空位形成能,因而溶质Cr与空位之间存在微弱的吸引;对于同一Cr含量,不同构型的空位形成能及空位和Cr的结合能均不同,且Cr含量越高,数值越分散;随着Cr含量的增加,平均空位形成能及空位与Cr的平均结合能均略有下降,因而溶质原子Cr附近空位更易形成,空位浓度更高,同样也表明溶质Cr与空位有微弱的吸引。这些结论将有助于深入理解W中溶质元素存在条件下辐照缺陷演化过程的微观物理机制。  相似文献   

4.
金属钨(W)是未来聚变堆反应环境中面向等离子体的主要候选材料之一,开展W中氢同位素输运和滞留行为的定量研究,对评估钨的服役性能及聚变堆燃料的物料平衡至关重要。本工作采用热脱附谱方法定量研究了多晶W经能量为100 eV/D、注量为3.8×1024 D/m2的D+辐照作用后,在不同升温速率下氘的热脱附特性。研究发现,氘的热脱附量在不同升温速率下均为1022 D2/m2量级,随着升温速率的增大,氘的热脱附峰峰位向高温方向移动。多晶W中氘的热脱附行为符合一级反应特征,钨中空位是氘在钨中的主要俘获态,D原子的热脱附能为1.04 eV。  相似文献   

5.
钨基材料具有高熔点、高热导率、蒸气压低、氚滞留量低等优良性能,成为具有广阔应用前景的面向等离子体材料。由于其低温脆性、再结晶脆性和辐照损伤等方面的不足,限制了其在工程上的应用,成为国际核聚变材料界的研究热点。本文综述了钨基面向等离子体材料的研究现状,阐述了钨材料在4类粒子辐照下所引起的损伤和当前钨材料改善性能常用的4类手段,并对当下钨材料还需解决的问题进行探讨。  相似文献   

6.
轻核聚变反应产生的核能是解决能源问题的有效途径。但核聚变堆中材料的工作环境苛刻,钨凭借其优异性能成为今后核聚变装置中最有前途的备选材料,然而纯钨用于聚变堆时,存在韧脆转变温度较高、再结晶温度低、辐照硬化和脆化以及难加工等问题。因此,引入钨基材料以达到解决上述问题的目的。在此基础上,介绍了钨和钨基材料在等离子体辐照、高热负荷以及高能中子辐照作用下的损伤行为,讨论了损伤机理,并指出了尚需研究的若干关键问题。  相似文献   

7.
利用等离子体喷涂技术制备了钨涂层面对等离子体材料,并对涂层基本性能进行了表征,主要包括气孔率,相对密度,结合强度,热导率,硬度分布,进而研究主动水冷钨涂层在热负荷服役条件下损伤演变行为。研究发现,直接水冷钨涂层内部层与层之间的开裂、分层是涂层失效的原因,损伤演变过程为柱状晶体再结晶并长大、层间微裂纹出现、裂纹扩展和气孔出现、最后材料分层、失效。间接水冷钨材料的热负荷性能受到很大限制,且疲劳性能降低,失效形式是涂层开裂或脱落,甚至铜基体整体熔化。  相似文献   

8.
在高能粒子辐照条件下,金属基结构材料内部会出现不同类型的缺陷,这些辐照诱导缺陷的大规模聚集会造成损伤,降低材料的结构稳定性,从而严重影响结构材料的力学和物理性能。通过材料设计的手段引入界面充当缺陷陷阱,可通过对辐照诱导缺陷的分离、吸收和湮灭,有效减轻材料的辐照损伤。纳米结构材料由于含有高密度界面,其辐照损伤行为的研究于近20年快速发展,且界面能被证实是影响界面调控辐照损伤的重要因素。本文聚焦金属基纳米结构材料,围绕界面设计,详细阐述了低能和高能界面设计下,不同结构类型的界面对辐照损伤的影响及界面响应行为的研究进展,为进一步实现界面结构优化,平衡界面能、界面结构稳定性及良好辐照抗性之间的关系提供理论基础和科学依据。最后,基于前述界面设计的思想,总结了近年来发展的碳/金属界面设计及抗辐照损伤的研究进展,展望了未来先进抗辐照金属基纳米结构材料的设计和发展。  相似文献   

9.
利用等离子体喷涂技术制备了钨涂层面对等离子体材料,并对涂层基本性能进行了表征,主要包括气孔率、相对密度、结合强度、热导率、硬度分布,进而研究主动水冷钨涂层在热负荷服役条件下的损伤演变行为。研究发现,直接水冷钨涂层内部层与层之间的开裂、分层是涂层失效的原因,损伤演变过程为柱状晶体再结晶并长大、层间微裂纹出现、裂纹扩展和气孔出现、最后材料分层、失效。间接水冷钨材料的热负荷性能受到很大限制,且疲劳性能降低,失效形式是涂层开裂或脱落,甚至铜基体整体熔化。  相似文献   

10.
利用高能离子注入机和直线等离子体模拟装置,本文研究了高能氦离子预注入对氘等离子体辐照后钨中氘滞留行为的影响。采用FIB-SEM、TEM、GD-OES和TDS等分析方法,分析了氦离子预注入对钨中氘滞留行为的影响。结果表明:氦离子预注入在辐照损伤区域形成大量氦泡,钨经过氘等离子体辐照后,表面的氘泡数量明显低于未经过氦离子预注入的样品。GD-OES分析中可以看到在氦捕获位处氘滞留浓度明显升高,同时氦离子预注入增加了氘在钨中的扩散深度,结合TDS分析可知氦离子预注入增加了氘在钨中的滞留总量,这是由于氦离子预注入后,形成的缺陷又为钨中氘的俘获提供大量新的位点,从而导致钨中的氘滞留量明显提高。  相似文献   

11.
刘豪  龙海川  郑鹏飞  邱长军  陈勇 《表面技术》2022,51(8):168-178, 213
重点综述了国内外关于氧化物或碳化物作为强化相的钨基面向等离子体材料的力学性能、氢滞留特性以及辐照损伤,发现制备工艺和强化相含量是影响钨基面向等离子体材料力学性能的主要方面,而均匀分散的强化相颗粒所致使的组织致密化程度更高是钨基材料力学性能提高的主要因素。其次,阐述了晶界和晶内的强化相颗粒分散不均表现出的位移损伤、气泡、绒毛、微裂纹等缺陷都将增加材料对氢同位素的捕获几率,以及等离子体辐照造成的脆化硬化将降低材料的抗热冲击性能。最后分析了近些年弥散强化钨基面向等离子体材料存在的关键基础问题,展望了未来弥散强化钨基材料的主要发展趋势,期望为开发优异的抗高热负荷和辐照损伤的钨基材料方面提供重要参考。  相似文献   

12.
Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ~20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.  相似文献   

13.
Radiation-induced defects cause severe degradation of materials properties during irradiation that can ultimately cause the material to fail. Consequences of these defects include swelling, embrittlement, and undesirable phase transformations. Nanocrystalline materials, which contain a high density of grain boundaries, have demonstrated enhanced radiation tolerance compared to large grain counterparts under certain conditions. This is because, as has long been recognized, grain boundaries can serve as defect sinks for absorbing and annihilating radiation-induced defects. Increasingly, researchers have examined how grain boundaries influence the direct production of defects during collision cascade, the origin of the radiation-induced defects. In this review article, we analyze the computational studies in this area that have been performed during the past two decades. These studies examine defect production near grain boundaries in metallic, ionic, and covalent systems. It is found that, in most systems, grain boundaries absorb more interstitials than vacancies during the defect production stage. While this is generically true of most boundaries, the detailed interaction between defects and grain boundaries does depend on boundary atomic structure, the stress state near the boundary, cascade-boundary separation, and materials properties. Furthermore, the defect distribution near boundaries is qualitatively different from that in single crystals, with the former often exhibiting larger vacancy clusters and smaller interstitial clusters than the latter. Finally, grain boundaries that are damaged after cascades have occurred exhibit different interaction behavior with defects than their pristine counterparts. Together, these atomistic simulation results provide useful insight for both developing higher-level modeling of defect evolution at long timescales and how interfaces influence radiation damage evolution.  相似文献   

14.
Fe基金属玻璃具有长程无序结构且内含大量的自由体积,相较于传统耐辐照晶体金属具有不同寻常的结构优势,且由于其具有较低的加工成本、超高的强度、较好的软磁性能与较宽的过冷液相区等优良的理化性质,而得到研究人员的密切关注,被认为或可以作为面向等离子体候选材料应用于聚变装置中,因而关于其耐辐照性能的研究得到了广泛开展。团簇加连接原子模型可以指导金属玻璃组分的设计,获得具有更高玻璃形成能力的Fe基金属玻璃,且具有更大负混合焓的组分原子可以提升金属玻璃的晶化开始温度,为突破尺寸限制以及提高Fe基金属玻璃的稳定性提供了一条崭新的思路。从团簇加连接原子模型设计金属玻璃的角度简述了本课题组研究的两种成分的Fe基金属玻璃Fe80B13Si7及Fe68B25Zr7的选择依据,同时根据国内外研究现状,总结了在离子束辐照下,Fe基金属玻璃的结构、表面形貌、磁性能以及光学性能的变化,探究了其辐照损伤的形成机制,并浅析了Fe基金属玻璃具有较好的耐辐照性能的原因,为其应用于聚变堆环境作为第一镜等构件材料以及开发具有更大极限尺寸、更好耐辐照性能的Fe基金属玻璃的研究提供一定的数据支撑。  相似文献   

15.
Stochastic annealing simulations provide a way of exploring the evolution of displacement damage created by irradiation over large time and distance scales while retaining explicit information on the spatial distribution of individual defects. In this article, the various stages of defect production in displacement cascades and the models that are applicable at each stage are discussed. The role of stochastic annealing simulations as a link between molecular dynamics and reaction-rate theory is illustrated by simulations of defect production in cascades in copper.  相似文献   

16.
Nanostructuredferritic alloys (NFAs) have the potential to make transformational contributions to developing advanced sources of fission and fusion energy. NFAs are Fe-Cr based ferritic stainless steels that contain an ultrahigh density of Y-Ti-O nanofeatures (NFs). The NFs provide both outstanding high temperature properties and remarkable tolerance to irradiation induced displacement damage as well as the degrading effects of transmutation product helium. Indeed, NFs can transform helium from a liability to an asset by forming a high density of nm-scale bubbles that act as sinks for point defects and helium may provide near immunity to radiation damage. This article outlines recent progress on engaging the challenges facing NFA development.  相似文献   

17.
难熔高熵合金在反应堆结构材料领域的机遇与挑战   总被引:1,自引:0,他引:1  
传统反应堆结构材料性能已趋于极限,亟需开发新型材料。难熔高熵合金是以多种难熔元素作为主元的新型金属材料,具有独特的力学、物理和化学性质,尤其在高温力学、抗辐照等方面表现出优异的性能。难熔高熵合金在第4代核裂变反应堆包壳材料、核聚变堆面向第一壁材料等关键领域具有广阔的应用前景。本文结合具有代表性的文献,围绕难熔高熵合金的力学性能、抗辐照性能、抗氧化性能阐述了其强化机制与抗辐照机理,梳理了难熔高熵合金的发展脉络,在此基础上展望了难熔高熵合金在反应堆结构材料领域的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号