首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wen Wang 《Ceramics International》2021,47(12):16762-16769
This research intended to study the impacts of different contents of the TiN additive on the mechanical properties and microstructural features of the TiB2–SiC-based composites. Three different samples of TiB2-15 vol% SiC- x vol% TiN (x = 0, 3.5, and 7) were produced by hot-pressing at 2000 °C under 35 MPa for 120 min. Thanks to advancement of some reactions among the TiB2 surface oxides and the SiC reinforcement, two in-situ phases of TiC and SiO2 were produced during the sintering. Nevertheless, the TiN incorporation resulted in generating another in-situ compound (TiC0.3N0.7) in the relevant as-sintered ceramics. Moreover, introducing TiN significantly refined the microstructure of the composites, leading to higher mechanical characteristics. Finally, the highest flexural strength (781 MPa) and Vickers hardness (27.1 GPa) values were attained for the sample introduced by 7 vol% TiN.  相似文献   

2.
SiC–Zr2CN composites were fabricated by conventional hot pressing from β-SiC and ZrN powders with 2 vol% equimolar Y2O3–Sc2O3 as a sintering additive. The effects of the ZrN addition on the room-temperature (RT) mechanical properties and high-temperature flexural strength of the SiC–Zr2CN composites were investigated. The fracture toughness gradually increased from 4.2 ± 0.3 MPa·m1/2 for monolithic SiC to 6.3 ± 0.2 MPa·m1/2 for a SiC–20 vol% ZrN composite, whereas the RT flexural strength (546 ± 32 MPa for the monolithic SiC) reached its maximum of 644 ± 87 MPa for the SiC–10 vol% ZrN composite. The monolithic SiC had improved strength at 1200°C, whereas the SiC–Zr2CN composites could not retain their RT strengths at 1200°C. The typical flexural strength values of the SiC–0, 10, and 20 vol% ZrN composites at 1200°C were 650 ± 53, 448 ± 31, and 386 ± 19 MPa, whereas their RT strength values were 546 ± 32, 644 ± 87, and 528 ± 117 MPa, respectively.  相似文献   

3.
Highly conductive SiC-Ti2CN composites were fabricated from β-SiC and TiN powders with 10?vol% Y2O3-AlN additives via pressureless sintering. The effect of initial TiN content on the microstructure, and electrical and mechanical properties of the SiC-Ti2CN composites was investigated. It was found that all specimens could be sintered to ≥98% of the theoretical density. The electrical resistivity of the SiC-Ti2CN composites decreased with increasing initial TiN content. The SiC-Ti2CN composites prepared from 25?vol% TiN showed the highest electrical conductivity (~1163 (Ω?cm)?1) for any pressureless sintered SiC ceramics thus far. The high electrical conductivity of the composites was attributed to the in situ-synthesis of an electrically conductive Ti2CN phase and the growth of N-doped SiC grains during pressureless sintering. The flexural strength, fracture toughness, and Vickers hardness of the composite fabricated with 25?vol% TiN were 430?MPa, 4.9?MPa?m1/2, and 23.1?GPa, respectively, at room temperature.  相似文献   

4.
《Ceramics International》2022,48(5):6745-6749
A series of (Ti0.5Nb0.5)C-x wt.% SiC (x = 0, 5, 10, 20) composites were prepared by spark plasma sintering. Dense microstructures with well‐dispersed SiC particles were obtained for all composites. With the increment of SiC content, the Vickers hardness, Young's modulus and fracture toughness increase monotonically. An optimized flexural strength of 706 MPa was achieved in (Ti0.5Nb0.5)C-5 wt.%SiC composite. (Ti0.5Nb0.5)C-20 wt%SiC composite exhibits the highest fracture toughness of 6.8 MPa m1/2. The crack deflections and the suppression of grain growth were the main strengthening and toughening mechanisms. Besides, (Ti0.5Nb0.5)C-20 wt%SiC composite exhibit the highest thermal conductivity of 45 W/m·K at 800 °C.  相似文献   

5.
《Ceramics International》2023,49(20):32799-32807
Al2O3/ZrO2/SiC ceramic composites with different SiC contens have been prepared by hot pressuring. The effect of SiC content on the microstructure and mechanical properties of composites have been studied. The results show that SiC has obvious grain refinement effect on ZTA ceramics and change the fracture mode of the matrix from intergranular fracture to transgranular fracture. Simultaneously, it has been found that the mechanical properties of the material are significantly enhanced in comparison with ZTA matrix. The highest strength is acquired at 10% SiC content, the flexural strength and toughness are obtained when the SiC content is 15 vol%, and the values are 18.86 GPa, 1262 MPa and 6.13 MPa m1/2, respectively. The mechanisms of hardening, strengthening and toughening have been discussed.  相似文献   

6.
In this study, TiB2-30 vol% SiC composites containing 0, 5, 10, and 15 vol% short carbon fibers (Cf) were produced by spark plasma sintering (SPS). The effect of carbon fiber content on microstructure, density, and mechanical properties (micro-hardness and flexural strength) of the fabricated composites was studied. Scanning electron microscopy (SEM) results indicated that the fibers were uniformly dispersed in the TiB2–SiC matrix using wet ball milling before SPS process. Fully dense TiB2–SiC–Cf composites were achieved by SPS process at 1900°C for 10 min under 30 MPa. With the addition of fibers, the relative density of the composites did not change considerably. Mechanical tests revealed that microhardness was reduced about 19% by the incorporation of carbon fibers, whereas the flexural strength improved significantly. However, the flexural strength diminished by adding carbon fibers above to critical value (5 vol%) due to residual thermal stresses, nonhomogeneous structure and graphitization of carbon fibers. It was found that the composite with 5 vol% Cf had the highest flexural strength (482 MPa), which was enhanced by 20% compared with the TiB2–SiC composite.  相似文献   

7.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

8.
《Ceramics International》2022,48(20):29641-29651
Novel (Zr, Ti)(C, N)–SiC ceramics were fabricated by reactive hot-pressing at 1500–1700 °C using ZrC, TiC0.5N0.5, and Si powders as raw materials for the first time. The effects of Si addition on the microstructures and mechanical properties were investigated. The reaction completely proceeded to generate SiC with an Si addition of 5 mol%. The grain refinement by SiC and solid solution strengthening of (Zr, Ti)(C, N) improve the mechanical properties. A high flexural strength of 522 ± 20 MPa was obtained in the Z5T5S ceramics (ZrC with 4.75 mol% TiC0.5N0.5 and 5 mol% Si additional). When the Si addition increases to 10 mol%, the residual Ti-stabilized β-ZrSi phase appears, which significantly reduces the flexural strength. The Vickers hardness and fracture toughness monotonically increase with increasing Si addition. The fine-grained microstructure without a residual phase and abundant intrinsic lattice defects in the Z5T5S composite endow it with the potential to obtain excellent radiation resistance.  相似文献   

9.
Short Pitch-based carbon fiber-reinforced HfB2 matrix composites containing 20 vol% SiC, with fiber volume fractions in the range of 20–50%, were manufactured by hot-press process. Highly dense composite compacts were obtained at 2100 °C and 20 MPa for 60 min. The flexural strength of the composites was measured at room temperature and 1600 °C. The fracture toughness, thermal and electrical conductivities of the composites were evaluated at room temperature. The effects of fiber volume fractions on these properties were assessed. The flexural strength of the composites depended on the fiber volume fraction. In addition, the flexural strength was significantly greater at 1600 °C than at room temperature. The fracture toughness was improved due to the incorporation of fibers. The thermal and electrical conductivities decreased with the increase of fiber volume fraction, however.  相似文献   

10.
1.75 mol% Y2O3-stabilized ZrO2–TiN composites could be fully densified by hot pressing for 1 h at 1550 °C in vacuum under a mechanical pressure of 28 MPa. Composites with 35–95 vol% TiN were investigated and the best mechanical properties, i.e., a Vickers hardness of 14.7 GPa, an indentation toughness of 5.9 MPa m1/2 and an excellent bending strength of 1674 MPa were obtained with 40 vol% TiN. The active toughening mechanisms were identified and their contribution to the overall composite toughness as function of the TiN content was modelled, experimentally verified and discussed. Transformation toughening was found to be the primary toughening mechanism. The TiN grain size was found to increase with increasing TiN content, resulting in a decreasing hardness and strength. A maximum strength was obtained at 40 vol% TiN. The electrical resistivity of the composites decreases exponentially with increasing TiN content and correlates well with the Polder-Van Santen mixture rule. Thus at around 40 vol% TiN, the conductivity is high enough to allow EDM machining of the composite, therefore avoiding the expensive grinding operation for final shaping and surface finishing of components.  相似文献   

11.
This research aimed to study the influence of different amounts of hBN additive on the mechanical properties and microstructure of TiB2-15 vol% SiC samples. All ceramics, containing 0, 3.5, and 7 vol% hBN, were sintered at 2000 °C using a hot-pressing route and reached their near full densities. Thanks to two different chemical reactions among the SiC reinforcement and the TiB2 surface oxides (B2O3 and TiO2), the in-situ phases of SiO2 and TiC were generated over the sintering process. The intergranular mode was identified as the predominant fracture type in all three composite samples. The hBN additive could contribute to grain refining of composites so that the sample containing 7 vol% hBN reached the finest microstructure. Finally, the highest Vickers hardness of 25.4 HV0.5 kg and flexural strength of 776 MPa were attained for the TiB2–SiC and TiB2–SiC-7 vol% hBN samples, respectively.  相似文献   

12.
Herein, hierarchical porous SiCnw-Si3N4 composite ceramics with good electromagnetic absorption properties were prepared. A porous Si3N4 matrix with different pore structures was first prepared by gelcasting-pressureless sintering (G-PLS) and gelcasting combined with particle stabilized foam-pressureless sintering (G-PSF-PLS). SiCnw was then introduced by catalytic chemical vapor deposition (CCVD). An increase in solid loading (25–40 vol%) decreased apparent porosity (47.7–41.3%) and improved flexural strength (142.19–240.36 MPa) and fracture toughness (2.25–3.68 MPa·m1/2). The addition of foam stabilizer propyl gallate (PG, 0.5–1.0 wt%) significantly increased apparent porosity (73.2–86.4%) and realized large-sized spherical pores, reducing flexural strength (58.23–38.56 MPa) and fracture toughness (0.75–0.41 MPa·m1/2). High apparent porosity and large-sized pores facilitated the introduction of SiCnw. The 25 vol% sample exhibited a reflection loss of ? 14.67 dB with an effective absorption bandwidth of 3.47 GHz, suggesting a development potential in the electromagnetic wave absorption field.  相似文献   

13.
The oxidation behavior for ZrB2–20 vol% SiC (ZS20) and ZrB2–30 vol% SiC (ZS30) ceramics at 1500 °C was evaluated by weight gain measurements and cross-sectional microstructure analysis. Based on the oxidation results, laminated ZrB2–30 vol% SiC (ZS30)/ZrB2–25 vol% SiC (ZS25)/ZrB2–30 vol% SiC (ZS30) symmetric structure with ZS30 as the outer layer were prepared. The influence of thermal residual stress and the layer thickness ratio of outer and inner layer on the mechanical properties of ZS30/ZS25/ZS30 composites were studied. It was found that higher surface compressive stress resulted in higher flexural strength. The fracture toughness of ZS30/ZS25/ZS30 laminates was found to reach to 10.73 MPa m1/2 at the layer thickness ratio of 0.5, which was almost 2 times that of ZS30 monolithic ceramics.  相似文献   

14.
《Ceramics International》2021,47(24):34199-34206
High flexural strength is an important mechanical property for a ceramic armor component to withstand high tensile stresses and protect its structural integrity against multiple hits. Also, larger fragments are required in fragmentation as larger fractured parts are harder to leave of the way for the penetrator and cause more abrasion and higher penetration resistance. In this study, the effect of different ZrO2 content (0, 0.5, 1, 3, 5, 10, 20 vol%) on the flexural strength of Al2O3–ZrO2 composites was investigated with relationship of the stored failure energy-crack length to evaluate the fragmentation behavior under possible impact conditions. Monotonic equibiaxial flexural strength test was used to measure the fracture strength. The highest strength was obtained for 20 vol% ZrO2 containing composite as 435 ± 78 MPa, ~ 24% increase in comparison with the pure Al2O3. The transformation of tetragonal to monoclinic phase occurred during the strength test in the 10 and 20 vol% ZrO2 content composites. 20 vol% ZrO2 containing composite had the smallest total crack length accompanying the largest fragment size for a given fracture energy among all the composites due to the stress-induced transformation of ZrO2 consumes energy that results in decreasing effective crack driving energy required for the crack branching.  相似文献   

15.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   

16.
Dense SiC (97.3–99.2% relative density) of 1.1–3.5 μm average grain size was prepared by the combination of colloidal processing of bimodal SiC particles with sintering additives (Al2O3 plus Y2O3, 2–4 vol%) and subsequent hot-pressing at 1900–1950 °C. The fracture toughness of SiC was sensitive to the grain boundary thickness which was controlled by grain size and amount of oxide additives. A maximum fracture toughness (6.2 MPa m1/2) was measured at 20 nm of grain boundary thickness. The mixing of 30 nm SiC (25 vol%) with 800 nm SiC (75 vol%) was effective to reduce the flaw size of fracture origin, in addition to a high fracture toughness, leading to the increase of flexural strength. However, the processing of a mixture of 30 nm SiC (25 vol%)–330 nm SiC (75 vol%) provided too small grains (1.1 μm average grain size), resultant thin grain boundaries (12 nm), decreased fracture toughness, and relatively large defect of fracture origin, resulting in the decreased strength.  相似文献   

17.
Two different SiC ceramics with a new additive composition (1.87 wt% Y2O3–Sc2O3–MgO) were developed as matrix materials for fully ceramic microencapsulated fuels. The mechanical and thermal properties of the newly developed SiC ceramics with the new additive system were investigated. Powder mixtures prepared from the additives were sintered at 1850 °C under an applied pressure of 30 MPa for 2 h in an argon or nitrogen atmosphere. We observed that both samples could be sintered to ≥99.9% of the theoretical density. The SiC ceramic sintered in argon exhibited higher toughness and thermal conductivity and lower flexural strength than the sample sintered in nitrogen. The flexural strength, fracture toughness, Vickers hardness, and thermal conductivity values of the SiC ceramics sintered in nitrogen were 1077 ± 46 MPa, 4.3 ± 0.3 MPa·m1/2, 25.4 ± 1.2 GPa, and 99 Wm−1 K−1 at room temperature, respectively.  相似文献   

18.
The intrinsic microstructure and crystalline phases of porous SiC ceramics with 5 vol% AlN–RE2O3 (RE = Sc, Y, Lu) additives were characterized by high-resolution transmission microscopy with energy-dispersive spectroscopy and X-ray diffraction. The homophase (SiC/SiC) and heterophase (SiC/junction) boundaries were found to be clean; that is, amorphous films were not observed in the specimens. In addition, ScN, YN, and LuN were formed as secondary phases. The flexural strength and thermal conductivity of the ceramics were successfully tuned using different additive compositions. The flexural strength of the ceramics improved by a factor of ~3, from 11.7 MPa for the specimen containing Y2O3 to 34.2 MPa for that containing Sc2O3, owing to the formation of a wide necking area between SiC grains. For the same reason, the thermal conductivity improved by ~56%, from 9.2 W·m?1·K?1 for the specimen containing Lu2O3 to 14.4 W·m?1·K?1 for that containing Sc2O3.  相似文献   

19.
《Ceramics International》2017,43(16):13483-13492
The current work focuses on enhancing the flexural strength and fracture toughness of zirconium diboride (ZrB2) reinforced with silicon carbide (SiC) and carbon nanotubes (CNT). The flexural strength has shown to increase by ~ 1.2 times from 322.8 MPa (for ZrB2) to 390.7 MPa and fracture toughness up to 3 times from 3.2 MPam0.5 (for ZrB2) to 9.5 MPam0.5 with the synergistic addition of both SiC and CNT in ZrB2 matrix through energy dissipating mechanisms such as deflection, branching and strong interfacial bonding evidenced from the transmission electron microscopy (TEM). A modified fractal model is used to evaluate the fracture toughness and delineate the contribution of residual stresses, and reinforcements (SiC and CNT) in enhancing the fracture toughness. Interfacial bonding, in terms of a debonding factor, was also evaluated by theoretically predicting the elastic modulus and then correlated with the microstructure along with other mechanical properties of ZrB2-SiC-CNT composites.  相似文献   

20.
A novel SiC-20 vol% TiC composite prepared via a two-step sintering technique using 6.5 vol% Y2O3-Sc2O3-MgO exhibited high deformation (60 %) on hot forging attributed to the high-temperature plasticity of TiC (ductile to brittle transition temperature ~800 °C) and fine-grained microstructure (~276 nm). The newly developed SiC-TiC composite exhibited a ~2-fold increase in nominal strain as compared to that of monolithic SiC. The plastic deformation caused by grain-boundary sliding in monolithic SiC was supplemented by the plastic deformation of TiC in the SiC-TiC composite. The hot-forged composite exhibited anisotropy in its microstructure and mechanical and thermal properties due to the preferred alignment of α-SiC platelets formed in situ. The relative density, flexural strength, fracture toughness, and thermal conductivity of the composite increased from 98.4 %, 608 MPa, 5.1 MPa?m1/2, and 34.6 Wm?1 K?1 in the as-sintered specimen to 99.9 %, 718–777 MPa, 6.9–7.8 MPa?m1/2, and 54.8–74.7 Wm?1 K?1, respectively, on hot forging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号