首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high refractive index La2O3–TiO2–Nb2O5 glasses were prepared by containerless processing, and the glass‐forming region was determined. The refractive index showed the range from 2.20 to 2.32, and the values were much higher than those of most optical glasses. The completely miscible 30LaO3/2–(70?x)TiO2xNbO5/2 (0 ≤ ≤70) system was fabricated to study the compositional dependence of refractive index and optical transmittance. The crucial determinants of the refractive index of oxide glasses, oxygen molar volume, and electronic polarizability of oxygen ions were calculated. The principle of additivity of glass properties was suitable for the calculation of refractive index between glass and compositional oxides. All the glasses were colorless and transparent in the visible to 6.5 μm middle infrared (MIR) region. These results are useful for designing new optical glasses with high refractive index and low wavelength dispersion in wide optical window.  相似文献   

2.
La2O3–Ga2O3M2O5 (M = Nb or Ta) ternary glasses were fabricated using an aerodynamic levitation technique, and their glass‐forming regions and thermal and optical properties were investigated. Incorporation of adequate amounts of Nb2O5 and Ta2O5 drastically improved the thermal stabilities of the glasses against crystallization. Optical transmittance measurements revealed that all the glasses were transparent over a wide wavelength range from the ultraviolet to the mid‐infrared. The refractive indices of the glasses increased and the Abbe number decreased upon substituting Ga2O3 with Nb2O5, and the decrease in the Abbe number was significantly suppressed when Ta2O5 was incorporated into the glass. As a result, excellent compatibility between high refractive index and lower wavelength dispersion was realized in La2O3–Ga2O3–Ta2O5 glasses. Analysis based on the single‐oscillator Drude–Voigt model provided more systematical information and revealed that this compatibility was due to an increase in the electron density of the glass.  相似文献   

3.
Glasses in the 30La2O3-40TiO2-30Nb2O5 system are known to have excellent optical properties such as refractive indices over 2.25 and wide transmittance within the visible to mid-infrared (MIR) region. However, titanoniobate glasses also tend to crystallize easily, significantly limiting their applications in optical glasses due to processing challenges. Therefore, the 30La2O3-40TiO2-(30−x) Nb2O5-xAl2O3 (LTNA) glass system was successfully synthesized using a aerodynamic containerless technique, which improves glass thermal stability and expands the glass-forming region. The effects of Al2O3 on the structure, thermal, and optical properties of base composition glasses were investigated by XRD, DSC, NMR, Raman spectroscopy, and optical measurements. DSC results indicated that as the content of Al2O3 increased, the thermal stability of the glasses and glass-forming ability increased, as the 30La2O3-40TiO2-25Nb2O5-5Al2O3 (Nb-Al-5) glass obtained the highest ΔT value (103.5°C). Structural analysis indicates that the proportion of [AlO4] units increases gradually and participates in the glass network structure to increase connectivity, promoting more oxygen to become bridging oxygen and form [AlO4] tetrahedral linkages to [TiO5] and [NbO6] groups. The refractive index values of amorphous glasses remained above 2.1 upon Al2O3 substitution, and a transmittance exceeding 65% in the visible and mid-infrared range. The crystallization activation energies of 30La2O3-40TiO2-30Nb2O5 (Nb-Al-0) and Nb-Al-5 glasses were calculated to be 611.7 and 561.4 kJ/mol, and the Avrami parameters are 5.28 and 4.96, respectively. These results are useful to design new optical glass with good thermal stability, high refractive index and low wavelength dispersion for optical applications such as lenses, endoscopes, mini size lasers, and optical couplers.  相似文献   

4.
High refractive index glasses with nominal composition of 0.35La2O3–(0.65?x)Nb2O5xTa2O5 (x ≤ 0.35) were prepared by aerodynamic levitation method. The effect of Ta2O5 substituting on their thermal and optical properties was investigated. All the glasses obtained were colorless and transparent. Differential thermal analyzer results show that as the content of Ta2O5 increased, the thermal stability of the glasses increased but the glass‐forming ability decreased. The transmittance spectra of all the obtained glasses exhibited a wide transmittance window ranging from 380 to 5500 nm. As the content of Ta2O5 increased, the refractive index of the glasses was enhanced from 2.15 to 2.21 and the dispersion was reduced with the Abbe number increasing from 20 to 27.  相似文献   

5.
Sodium aluminophosphate glasses were evaluated for their bone repair ability. The glasses belonging to the system 45Na2O–xAl2O3‐(55‐x)P2O5, with = (3, 5, 7, 10 mol%) were prepared by a melt‐quenching method. We assessed the effect of Al2O3 content on the properties of Na2O–Al2O3–P2O5 (NAP) glasses, which were characterized by density measurements, DSC analyses, solubility, bioactivity in simulated body fluid and cytocompatibility with MG‐63 cells. To the best of our knowledge, this is the first investigation of calcium‐free Na2O–Al2O3–P2O5 system glasses as bioactive materials for bone tissue engineering.  相似文献   

6.
xNb2O5–7.5La2O3-Al2O3 ceramic composites with in-situ-grown columnar Al2O3 crystals were successfully prepared by microwave sintering at 1450–1525?°C using α-Al2O3, Nb2O5, and La2O3 powders as raw materials. X-ray diffraction results indicated that the main phases were Al2O3, LaNbO4, and Nb2O5 in the prepared samples. A field emission scanning electron microscope (FESEM) showed that the Al2O3 crystals appeared as columnar in the structure. Moreover, the grain size of the columnar Al2O3 crystals increased with the Nb2O5 content. The ratio of the major axis to the minor axis of the crystals was largest when the Nb2O5 content was 15?vol%. Furthermore, the grain-growth kinetics index (n), growth activation energy (Q), and growth mechanism of the columnar Al2O3 crystals were studied. The results indicated that the Nb2O5 addition could promote formation and growth of columnar Al2O3 crystals, and the grain-growth activation energy indicated that the dissolution process controls the crystal growth. The growth mechanism of the columnar Al2O3 crystals was also studied. The present work demonstrated that Nb2O5 is a good additive for the preparation of Nb2O5–7.5La2O3-Al2O3 composite ceramics with columnar Al2O3 crystals.  相似文献   

7.
The glass-forming region of a BaO-La2O3-Ga2O3 ternary system was confirmed and BaF2-BaO-La2O3-Ga2O3 new oxyfluoride glasses were prepared by a containerless processing. We also analyzed the physical, thermal, and optical properties of new oxide and oxyfluoride glasses. The direct effects of the substitution of oxygen by fluorine and the effect of BaO and La2O3 on the refractive index and Abbe number were discussed on the basis of electronic polarizability and resonance wavelength of oscillator. The refractive indices increased with increasing La2O3 concentration because La2O3 increased the electronic polarizabilities. Abbe number increased with increasing BaO and fluorine concentration because of the decrease in resonance wavelength of oscillator. By the combination of the BaO, La2O3, and fluorine in the gallate glass system, we could obtain novel oxide and oxyfluoride glasses with high refractive index (1.81-1.95) and high Abbe number (31-55). The absorption edge in UV region shifted to the shorter wavelength and IR cut-off wavelength shifted to the longer wavelength with increasing fluorine. Therefore, wide transparent glass was obtained from 262 nm to 11.3 μm.  相似文献   

8.
In this report, effect of enhanced rare earth (La2O3) concentration on substitution of TeO2 within ternary TeO2‐TiO2‐La2O3 (TTL) glass system has been studied with respect to its thermal, structural, mechanical, optical, and crystallization properties with an aim to achieve glass and glass‐ceramics having rare‐earth‐rich crystalline phase for nonlinear optical and infrared photonic applications. DSC analysis (10°C/min) demonstrates a progressive increase in glass‐transition temperature (Tg) from 359 to 452°C with the increase in La2O3 content. Continuous glass network modification with transformation of [TeO4] to [TeO3/TeO3+1] units is evidenced from Raman spectra which is corroborated with XPS studies. While mechanical properties demonstrate enhancement of cross‐linking density in the network. These glasses exhibit optical transmission window extended from 0.4 to 6 μm with calculated zero dispersion wavelength (λZDW) varying from 2.41 to 2.28 μm depending upon La2O3 content. Crystallization kinetics of TTL10 (80TeO2‐10TiO2‐10La2O3 in mol%) glass has been studied via established models. Activation energy (Ea) has been evaluated and dimensionality of crystal growth (m) suggests formation of surface crystals. Glass‐ceramic with crystalline phase of La2Te6O15 has been realized in heat‐treated TTL10 glass samples (at 450°C). As predicted from DSC analysis, FESEM study unveils the formation of surface crystallized glass‐ceramics.  相似文献   

9.
Based on phase equilibria, thermodynamic, and crystal structure data, the thermodynamic modeling of HfO2–La2O3–Al2O3 system is presented. Liquid phase is described by the modified quasichemical model considering the short‐range ordering in liquid solution. Solid solutions are described by the ionic sublattice model considering respective crystal structure. The model (La3+, Hf4+)2(Hf4+, La3+)2(O2?, Va)6(O2?)1(Va, O2?)1 successfully describes the structure defect, homogeneity range, and thermodynamic property of pyrochlore solid solution. A set of optimized model parameters is obtained which reproduces most experimental data well. Isothermal sections, liquidus and solidus projections, and Scheil reaction scheme are constructed.  相似文献   

10.
Transparent 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN‐PT) based ceramics were prepared by a conventional solid‐state synthesis without using a hot‐press method. The ceramics became transparent when they were sintered in an O2 atmosphere. The optical transmission increased with decreasing diameter of the calcined powder, which was controlled by the size of zirconia ball‐milling media. Substitution of 3 mol% La for Pb in PMN‐PT further increased the optical transmission to 68% at the wavelength of 2000 nm, which was comparable to that of hot‐pressed Pb(Mg1/3Nb2/3)O3‐PbTiO3 based transparent ceramics.  相似文献   

11.
Lead magnesium niobate titanate is an important ferroelectric material. In this study, the terahertz (THz) transmission properties of a 0.73Pb(Mg1/3Nb2/3)O3–0.27PbTiO3 single crystal were investigated using a time‐domain spectroscopy method. Complex refractive index and dielectric dispersion functions were determined from the amplitude and phase information derived from time‐domain responses. Based on calculations, it was concluded that the room‐temperature dielectric constant of the single crystal equal to ~30 at 1 THz. This result could be a useful reference for development of ferroelectric‐material‐based THz components and devices.  相似文献   

12.
The glass–ceramics containing a rarely achievable nanocrystalline SrIINbIVO3 phase in the 53.75SiO2–18.25K2O–9Bi2O3–9SrO–9Nb2O5–0.5CeO2–0.5Eu2O3 (mol%) glass system were prepared by the melt‐quench technique followed by a two‐stage controlled heat treatment. The unusual oxidation state of Nb in SrIINbIVO3 crystal is 4+ and upon heat treatment of the samples at lower temperature of 500°C for several hours, the glass composition and chemical environment around Nb ions played a key role for the formation of SrIINbIVO3 in the glass–ceramics. The microstructure of the glass–ceramics was studied using TEM and FESEM. The TEM images advocate 10–40 nm crystallite size of SrIINbIVO3. FTIR study confirms that all the samples consist of SiO4, BiO3, BiO6, and NbO6 structural units. The refractive index at different wavelengths was found to vary in the range 1.7105–1.7905 and increase with increase in heat‐treatment time. The luminescence spectra of Eu3+‐doped glass and glass–ceramics were recorded at 465 nm excitation wavelength and the luminescence intensity is found to be increased with heat‐treatment time due to increase in crystallinity. The high intensity ratio of 5D07F2 to 5D07F1 indicates that the Eu3+‐doped nanocrystalline SrIINbIVO3 glass–ceramics are promising candidate materials as red‐light source.  相似文献   

13.
We fabricated a series of stable Er‐doped CaO‐Al2O3(Ga2O3) glasses by aerodynamic levitation (ADL) method. Using thermal analysis, we studied the influence of composition on the thermal stability of the glasses. The results unraveled the significance of composition on the stability of glasses. Magic angle spinning nuclear magnetic resonance (MAS‐NMR) and Raman spectra were used to analyze the glass microstructure. The optical and spectroscopic properties were examined by UV‐Vis absorption, steady‐state fluorescence spectroscopy, transient state fluorescence spectroscopy, and luminescence quantum yield measurements. The results unraveled a clear concentration‐dependent up‐conversion and NIR emissions of Er3+, with obvious spectral broadening and redshift. The related mechanisms of decrease in fluorescent lifetime (from about 9 ms to 2 ms) and quantum yield (from about 75% to 5%) are discussed.  相似文献   

14.
Surface structures of iron–phosphate glasses were examined using X‐ray photoelectron spectroscopy (XPS). Cr2O3, CoO, and Al2O3 were introduced to the glass by the replacement of a part of Fe2O3, and the simulated fission products are also added. The obtained glasses showed high chemical durabilities by MCC‐1 test. In situ high‐temperature and room‐temperature XPS measurements were conducted on the polished sample surfaces and also those after 1‐week chemical durability test. Unique trends were observed in XPS spectra on heating and after the chemical durability test, respectively. Nature of the glass surface of iron–phosphate glasses was explained from the point of view of surface energy, and the origin of high chemical durability and the effect of chromium ions were discussed based on the changes on surface composition and valence states of transition‐metal ions.  相似文献   

15.
ZnO–TeO2–P2O5 glasses were prepared by melt‐quenching method. The color of the glass samples changed from colorless to pale red and dark red with increasing TeO2 content. Coloration mechanism and nonlinear optical properties of ZnO–TeO2–P2O5 glasses have been investigated. Raman spectra and transmission electron microscope measurements indicated the precipitation of ZnTe quantum dots in the glasses and ZnTe quantum dots are the origin of coloration. Z‐scan technique was used to examine the nonlinear optical properties of the glasses. The glass sample with 30 mol% TeO2 exhibits large third‐order nonlinear optical susceptibility of 10?11 esu.  相似文献   

16.
Glasses with ultra-wideband near-infrared emission and superior irradiation resistance are important for the potential applications in optical communications under harsh environments. Here, transparent 35La2O3-(65-x)Ga2O3-xTa2O5 (LGT) and Er3+/Tm3+/Pr3+ tri-doped LGT glasses are fabricated using the levitation method. LGT glasses exhibit a wide glass-formation region, low largest vibration energy, high refractive indices, and excellent mechanical properties. Additionally, Er3+/Tm3+/Pr3+ tri-doped LGT samples with varying Pr3+ contents are characterized by possessing good thermal stability (Tg>849°C), wide transparent optical window, strong radiation resistance, excellent compatibility between low wavelength dispersion (vd>31.2), and large refractive index (nd>2.048). By optimizing the doping content of Er3+, Tm3+, and Pr3+ in an appropriate ratio, the ultra-wideband near-infrared luminescence ranging from 1250 to 1640 nm (FWHM = 251 nm) has been acquired under 808 nm pumping. Furthermore, decay curves are measured to reveal the fluorescence dynamics, and then the related emission mechanism is elaborated systematically. Meanwhile, the effects of gamma irradiation doses on microstructure, transmittance spectra, and fluorescence characteristics are studied. This work may offer a valuable reference for doping optimization and new design strategy of multifunctional materials.  相似文献   

17.
A series of regular shaped Pb(Zn1/3Nb2/3)O3‐based ternary ferroelectric single crystals (1 ? x)Pb(In1/2Nb1/2)O3–0.33Pb(Zn1/3Nb2/3)O3xPbTiO3 (PIN–PZN–PT) have been grown by means of the top‐seeded solution growth method that prevented pyrochlore phase and promoted [001] or [111] growth. The nucleation and crystallization behavior of the Pb(Zn1/3Nb2/3)O3‐based ferroelectric single crystals differed from other relaxor‐based ferroelectric single crystals was discovered. Di‐/piezo‐/ferro‐/pyroelectric properties were characterized systematically. The PIN–PZN–PT single crystals showed large coercive fields Ec, high Curie temperature TC and high pyroelectric coefficient P, presenting similar performance but better thermal stability compared with the PZN–PT single crystals, and making it a promising material for transducers and IR detectors in a wider temperature range.  相似文献   

18.
Vitrified high‐level radioactive waste that contains high concentrations of Na2O and Al2O3, such as the waste stored at the Hanford site, can cause nepheline to precipitate in the glass upon cooling in the canisters. Nepheline formation removes oxides such as Al2O3 and SiO2 from the host glass, which can reduce its chemical durability. Uncertainty in the extent of precipitated nepheline necessitates operating at an enhanced waste loading margin, which increases operational costs by extending the vitrification mission as well as increasing waste storage requirements. A thermodynamic evaluation of the Na2O–Al2O3–SiO2 system that forms nepheline was conducted by utilizing the compound energy formalism and ionic liquid model to represent the solid solution and liquid phases, respectively. These were optimized with experimental data and used to extrapolate phase boundaries into regions of temperature and composition where measurements are unavailable. The intent is to import the determined Gibbs energies into a phase field model to more accurately predict nepheline phase formation and morphology evolution in waste glasses to allow for the design of formulations with maximum loading.  相似文献   

19.
We report on the formation of Bi2ZnB2O7 crystal structures with designated patterns in ZnO–Bi2O3–B2O3 glass by femtosecond laser direct writing. The crystallization mechanism in glass is investigated by crystallization kinetics analysis and simulation of the three‐dimensional temperature field distribution. The crystallized regions show larger third‐order optical nonlinearity than the unirradiated region in glass by Z‐scan technique. This finding is of great potential in application of nonlinear optical integrated devices and development of new nonlinear materials.  相似文献   

20.
A low sintering temperature glass based on the SiO2–P2O5–ZnO–B2O3–R2O (R=K and Na) system was studied as a matrix for embedding phosphors to fabricate color tunable white LEDs. The proposed system, which uses no heavy‐metal elements and can be sintered at 500°C, incorporates thermally weak commercial phosphors such as CaAlSiN3:Eu2+ to produce phosphor‐in‐glasses (PiGs). Changing the mixing ratio of glass to phosphors affected the photo‐luminescence spectra and color coordinates of the PiGs when mounted on a blue LED. The color rendering index (CRI) and color correlated temperature (CCT) of the LEDs were also varied with the mixing ratio, providing color tunable white LEDs. A high CRI, up to 93, as well as highly improved thermal stability were obtained, along with a low sintering temperature compared to other glass systems, suggesting the practical feasibility of the proposed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号