首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal properties were characterized for zirconium diboride produced by reactive hot pressing and compared to ZrB2 ceramics that were hot pressed from commercial powders. No sintering additives were used in either process. Thermal conductivity was calculated from measured values of heat capacity, thermal diffusivity, and density for temperatures ranging from 298 to 2273 K. ZrB2 produced by reactive hot pressing achieved near full density, but had a small volume fraction of ZrO2, whereas hot‐pressed ZrB2 contained porosity and carbon inclusions. Reactive hot pressing produced a ceramic with higher thermal diffusivity and heat capacity, resulting in thermal conductivities of 127 W·(m·K)?1 at 298 K and 80 W·(m·K)?1 at 2273 K, which were up to ~30% higher than typically reported for hot‐pressed ZrB2.  相似文献   

2.
The thermal properties were investigated for hot‐pressed zirconium diboride—transition‐metal boride solid solutions. The transition‐metal additives included hafnium, niobium, tungsten, titanium, and yttrium. The nominal additions were equivalent to 3 at.% of each metal with respect to zirconium. Powders were hot‐pressed to nearly full density at 2150°C using 0.5 wt% carbon as a sintering aid. Thermal diffusivity was measured using the laser flash method. Thermal conductivity was calculated from the thermal diffusivity results using temperature‐dependent values for density and heat capacity. At 25°C, the thermal conductivity ranged from 88 to 34 W·(m·K)?1 for specimens with various additives. Electrical resistivity measurements and the Wiedemann–Franz law were used to calculate the electron contribution of the thermal conductivity and revealed that thermal conductivity was dominated by the electron contribution. The decrease in thermal conductivity correlated with a decrease in unit cell volume, indicating that lattice strain may affect both phonon and electron transport in ZrB2.  相似文献   

3.
The lattice thermal conductivity of ZrC with different Hf contents was investigated theoretically. The density of states and electron density differences were calculated for ZrC and (Zr,Hf)C containing 3.125 or 6.25 at% Hf. It was found that the electronic structure did not change significantly with the Hf additions. Lattice thermal conductivities were calculated for all of the compositions by combining first-principles calculations with the Debye–Callaway model. The theoretical lattice thermal conductivity of ZrC was 68 W·m−1·K−1 at room temperature. When adding 3.125 and 6.25 at% Hf into ZrC, the lattice thermal conductivities decreased to 18 and 15 W·m−1·K−1, respectively. The mechanism for the decreased conductivity is that with the addition of Hf impurities, the frequency of the acoustic phonons decreased, which resulted in decreases in the Debye temperature and lattice thermal conductivity.  相似文献   

4.
The effect of Hf additions on the thermal properties of ZrB2 ceramics was studied. Reactive hot pressing of ZrH2, B, and HfB2 powders was used to synthesize (Zr1?x,Hfx)B2 ceramics with Hf contents ranging from x = 0.0001 (0.01 at.%) to 0.0033 (0.33 at.%). Room‐temperature heat capacity values decreased from 495 J·(kg·K)?1 for a Hf content of 0.01 at.% to 423 J·(kg·K)?1 for a Hf content of 0.28 at.%. Thermal conductivity values decreased from 141 to 100 W·(m·K)?1 as Hf content increased from 0.01 to 0.33 at.%. This study revealed, for the first time, that small Hf contents decreased the thermal conductivity of ZrB2 ceramics. Furthermore, the results indicated that reported thermal properties of ZrB2 ceramics are affected by the presence of impurities and do not represent intrinsic behavior.  相似文献   

5.
Foam‐gelcasting‐freeze drying method is developed to fabricate porous Y2SiO5 ceramic with ultrahigh porosity of 92.2%‐95.8% and isotropous multiple pore structures. As prepared porous samples have quite low shrinkages of 0.8%‐1.9% during demolding and drying processes, lightweights of 0.19‐0.35 g/cm3, and extremely low thermal conductivities of 0.054‐0.089 W·(m·K)?1. Our approach combines the merits of foam‐gelcasting method and freeze drying method. It is a simple and effective method to fabricate porous ceramics with very high porosity and extremely low thermal conductivity through low shrinkage of green body and near net complex shape forming.  相似文献   

6.
Rare‐earth (RE) monosilicates are promising candidates as environmental barrier coating (EBC) materials for ceramic matrix composites for aerospace applications. Five rare‐earth monosilicate materials have been investigated: Y2SiO5, Gd2SiO5, Er2SiO5, Yb2SiO5, and Lu2SiO5 produced from RE oxides and silica starting materials pressed and sintered at 1580°C under flowing air. Relative densities above 94% were obtained for all samples and ceramics were made containing 85–100 wt% of the RE monosilicate according to X‐ray diffraction (XRD) with RE disilicates as the second phase in the Gd, Yb, and Lu silicate systems. Microstructures were characterized using scanning electron microscopy and XRD, and thermal properties measured including specific heat, thermal expansion, and thermal diffusivity. For the first time, specific heat capacity values are reported for the monosilicates [0.45–0.69 J·(g·K)?1]. Thermal expansion coefficients (TECs) of the dense samples ranged between 5.9 and 10.3 × 10?6 K?1 measured for 473 to 1473 K. All EBCs have low thermal conductivities [1.8 W·(m·K)?1 or less] making them excellent EBC insulators.  相似文献   

7.
Hexagonal BN is an unusual material in that it is both highly thermally conductive as well as an electrical insulator. Additionally, hBN is also thermally stable in air. This unusual combination of properties makes hBN of significant interest for thermal management. Unfortunately, hBN is not easily consolidated into substrates without the addition of second phases which generally result in poorer thermal performance. This research investigates the potential to utilize this material to dissipate heat from high‐voltage, high‐power electrical devices. Specifically, a process to coat individual platelets of commercial hexagonal BN powder with a layer of amorphous aluminum oxide was developed. The coated hexagonal BN was then hot‐pressed to form a highly thermally conductive substrate. The process to coat hexagonal BN platelets with aluminum oxide was accomplished by mixing hexagonal BN with AlCl3 containing some water, then evaporation of excess AlCl3 to form a Al, Cl, and O layer on hexagonal BN. This product was then heated in air to convert the surface layer into aluminum oxide. Following hot pressing to 1950°C and 10 ksi, the consolidated composite has through‐plane and in‐plane thermal conductivity of 14 and 157 W·(m·K)?1, respectively, at room temperature.  相似文献   

8.
Si2N2O is a promising ceramic with various structural and functional applications. Precisely exploring its thermal conductivity is crucially important to evaluate its thermal transport reliability as high‐temperature structural component and electronic device. In this paper, temperature‐dependent lattice thermal conductivity of Si2N2O is studied based on a method integrating density functional theory calculations and experimental measurements. The relationship between the complex crystal structure (or heterogeneous chemical bonding) and lattice thermal conductivity of Si2N2O is studied. We herein show that Si2N2O intrinsically has moderately high lattice thermal conductivity [30.9 W·(m·K)?1 at 373 K], but extrinsic phonon scattering mechanisms, such as phonon scattering by point defects and grain boundaries etc., might significantly degrade the magnitude in experimental measurement [15.0 W·(m·K)?1 at 373 K]. This work suggests the significance that understanding the intrinsic thermal conductivity, namely the upper limit value, is a precursor to deciphering the more complicated heat transport behavior of Si2N2O.  相似文献   

9.
The microstructure, thermal conductivity, and electrical properties of pressureless densified SiC–BN composites prepared from in situ reaction of Si3N4, B4C, and C were systematically investigated, to achieve outstanding performance as substrate materials in electronic devices. The increasing BN content (0.25–8 wt%) in the composites resulted in finer microstructure, higher electrical resistivity, and lower dielectric constant and loss, at the expense of only slight degradation of thermal conductivity. The subsequently annealed composites showed more homogeneous microstructures with less crystal defects, further enhanced thermal conductivities and electrical resistivities, and reduced dielectric constants and losses, compared with the unannealed ones. The enhanced insulating performance, the weakened interface polarization, and the reduced current conduction loss were explained by the gradual equalization of dissolved B and N contents in SiC crystals and the consequent impurity compensation effect. The schottky contact between graphite and p‐type SiC grains presumably played a critical role in the formation of grain‐boundary barriers. The annealed composites doped with 8 wt% BN exhibited considerably high electrical resistivity (4.11 × 1011 Ω·cm) at 100 V/cm, low dielectric constant (16.50), and dielectric loss (0.127) at 1 MHz, good thermal conductivity [66.06 W·(m·K)?1] and relatively high strength (343 MPa) at room temperature.  相似文献   

10.
A fully dense SiC ceramic with a room‐temperature thermal conductivity of 262 W·(m·K)?1 was obtained via spark plasma sintering β‐SiC powder containing 0.79 vol% Y2O3‐Sc2O3. High‐resolution transmission electron microscopy revealed two different SiC‐SiC boundaries, that is, amorphous and clean boundaries, in addition to a fully crystallized junction phase. A high thermal conductivity was attributed to a low lattice oxygen content and the presence of clean SiC‐SiC boundaries.  相似文献   

11.
As promising TBC (thermal barrier coating) candidates, perovskite oxides own designable properties for their various options of cations and structural diversity, but limited comprehensions of structure‐property relationship delay their engineering applications. In this work, mechanical/thermal properties of ABO3 (A=Sr, Ba; B=Ti, Zr, Hf) perovskites and their anisotropic nature are predicted employing density functional theory. Their theoretical minimum thermal conductivities range from 1.09 to 1.74 W·m?1·K?1, being lower than Y2O3 partially stabilized ZrO2. Reduced thermal conductivities up to 16% along particular directions are reached after considering thermal conductivity anisotropy. All compounds own high hardness while SrZrO3, SrHfO3, and BaHfO3 possess well damage tolerance. We found that small electronegativity discrepancy leads to big anisotropy of chemical bond, Young's/shear moduli and thermal conductivities, together with good damage tolerance. These results suggest that the next generation TBCs with extra low thermal conductivity should be achieved through combining material design and orientation‐growth tailoring.  相似文献   

12.
LaYbZr2O7 ceramic thermal barrier coatings (TBC) of meta‐stable structure were prepared by an air plasma spraying process. Their microstructure and associated thermal transport properties evolution during high‐temperature annealing at 1300°C were characterized. The as‐sprayed LaYbZr2O7 TBCs underwent a fast crystallization and a quasi‐eutectoid transformation during annealing, resulting in a biphase composite consisting of La‐rich pyrochlore phase and Yb2Zr2O7 fluorite phase with coherent phase boundaries. Due to the diffusion barriers between the two phases as well as the low interface energy of the coherent boundaries, sintering and grain growth of materials was significantly refrained. Therefore, a final thermal dynamically stable microstructure with a grain size of ~300 nm and a total porosity about 5% could be maintained even after long‐term aging at a high temperature of 1300°C. Resulting from this stable microstructure, an ultralow thermal conductivity of 1.3 W·(m·K)?1 could be obtained even after 216 h high‐temperature aging, which is much lower than that of the state‐of‐art 7 wt% yttria‐stabilized zirconia TBCs. Both the high phase and microstructure stability and the extremely low thermal conductivities could be particularly beneficial for TBC material in gas turbine applications.  相似文献   

13.
A systematical ab initio analysis on MP2O7 (M = Ti, Hf) is presented in this work. Density functional theory (DFT) computations were performed for the electronic, mechanical, and thermal properties of MP2O7. Heterogeneous bonding nature of MP2O7 was revealed by examining the structural and electronic properties, M–O bonds were weaker than P–O bonds. The elastic constants and polycrystalline mechanical properties of MP2O7 were reported. Based on the low shear‐modulus‐to‐bulk‐modulus ratios and positive Cauchy pressure, MP2O7 ceramics were predicted to be “quasi‐ductile”. In addition, the minimum thermal conductivities were estimated to be 1.52 and 0.99 W·m?1·K?1 for TiP2O7 and HfP2O7, respectively. The ultra‐low thermal conductivities were contributed to the lattice phonon scattering due to the heterogeneous bonding nature. Our theoretical results emphasize the importance of weak M–O bonds in the determination of mechanical and thermal properties of MP2O7.  相似文献   

14.
A fully dense SiC ceramic with high thermal conductivity was obtained by conventional hot pressing, with 1 vol% Y2O3–Sc2O3 additives. The ceramic had a bimodal microstructure consisting of large and small equiaxed SiC grains. Observation with high‐resolution transmission electron microscopy (HRTEM) showed two kinds of homophase (SiC/SiC) boundaries, that is crystallized and clean boundaries, and a fully crystallized junction phase. The thermal conductivity of the SiC ceramic was 234 W (m·K)?1 at room temperature. The high thermal conductivity was attributed to a clean SiC lattice and good contiguity between SiC grains.  相似文献   

15.
The elevated temperature thermal properties of zirconium diboride ceramics containing boron carbide additions of up to 15 vol% were investigated using a combined experimental and modeling approach. The addition of B4C led to a decrease in the ZrB2 grain size from 22 µm for nominally pure ZrB2 to 5.4 µm for ZrB2 containing 15 vol% B4C. The measured room temperature thermal conductivity decreased from 93 W/m·K for nominally pure ZrB2 to 80 W/m·K for ZrB2 containing 15 vol% B4C. The thermal conductivity also decreased as temperature increased. For nominally pure ZrB2, the thermal conductivity was 67 W/m·K at 2000 °C compared to 55 W/m·K for ZrB2 containing 15 vol% B4C. A model was developed to describe the effects of grain size and the second phase additions on thermal conductivity from room temperature to 2000 °C. Differences between model predictions and measured values were less than 2 W/m·K at 25 °C for nominally pure ZrB2 and less than 6 W/m·K when 15 vol% B4C was added.  相似文献   

16.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

17.
Thermal barrier coatings (TBCs) are one of the most important materials in gas turbine to protect the high temperature components. RETa3O9 compounds have a defect‐perovskite structure, indicating that they have low thermal conductivity, which is the critical property of TBCs. Herein, dense RETa3O9 bulk ceramics were fabricated via solid‐state reaction. The crystal structure was characterized by X‐ray diffraction (XRD) and Raman Spectroscope. Scanning electron microscope (SEM) was used to observe the microstructure. The thermophysical properties of RETa3O9 were studied systematically, including specific heat, thermal diffusivity, thermal conductivity, thermal expansion coefficients, and high‐temperature phase stability. The thermal conductivities of RETa3O9 are very low (1.33‐2.37 W/m·K, 373‐1073 K), which are much lower than YSZ and La2Zr2O7; and the thermal expansion coefficients range from 4.0 × 10?6 K?1 to 10.2×10?6 K?1 (1273 K), which is close to La2Zr2O7 and YSZ. According to the differential scanning calorimetry (DSC) curve there is not phase transition at the test temperature. Due to the high melting point and excellent high‐temperature phase stability with these oxides, RETa3O9 ceramics were promising candidate materials for TBCs.  相似文献   

18.
Lanthanum molybdate, La2Mo2O9, has been attracted considerable attention owing to its high concentration of intrinsic oxygen vacancies, which could be reflected by enhanced phonon scattering and low thermal conductivity. A new series of La2Mo2O9‐based oxides of the general formula La2?xSmxMo2?xWxO9, where x ≤ 0.2, were synthesized by citric acid sol–gel process. The variation in thermal conductivity with Sm3+and W6+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The fully dense La2?xSmxMo2?xWxO9 ceramics showed a minimum thermal conductivity value [κ = 0.84 W·(m·K)?1,T = 1073 K] at the composition of La1.8Sm0.2Mo1.8W0.2O9, which stems from the multiple enhanced phonon scatterings due to mass and strain fluctuations at the La3+ and Mo6+ sites as well as the high concentration of intrinsic oxygen vacancies embedded in the crystal lattice. The thermal conductivities present an abrupt decrease at the structural transition, which is due to the phase transformation from a low‐temperature ordered form (monoclinic α‐La2Mo2O9) to a high‐temperature disordered form (cubic β‐La2Mo2O9).  相似文献   

19.
A2B2O7-type oxides with low thermal conductivities are potential candidates for next-generation thermal barrier coatings. The formation of high-entropy ceramics is considered as a newly effective way to further lower their thermal conductivities. High-entropy Y2(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)2O7 (5HEO) and Y2(Ti0.25Zr 0.25Hf0.25Ta0.25)2O7 (4HEO) ceramics were prepared by in situ solid reaction sintering, considering the important roles of B-site cations on thermal conductivities of the A2B2O7-type oxides. Reaction process, phase structures, microstructures, and thermal conductivities of the as-sintered ceramics were investigated. Lattice distortion effects on their thermal conductivities were also discussed by using the proposed criterion based on the supercell volume difference of the individual compounds. Near fully-dense 5HEO and 4HEO ceramics were obtained after being sintered at 1600°C. The former one had a dual-phase structure containing high-entropy Y2(Ti0.227Zr0.227Hf0.227Nb0.136Ta0.182)2O7.318 pyrochlore oxide (5HEO-P) and Y(Nb, Ta)O4 solid solution, while the latter one was a single-phase pyrochlore oxide (4HEO-P) with homogeneous element distribution. The formed 5HEO-P oxide has larger lattice distortion than 4HEO-P oxide due to the larger total amounts of Nb and Ta cations at B sites in the 5HEO-P oxide. It results in lower thermal conductivity of 5HEO ceramics (keeping at 1.8 W·m–1·K–1) than those of 4HEO ceramics (ranging from 1.8 to 2.5 W·m–1·K–1) at temperatures from 25°C to 1400°C. Their glass-like thermal conductivities were determined by the selection of B site cations and high-entropy effects. These results provide some useful information for the material design of novel thermal barrier coating materials.  相似文献   

20.
The temperature stability of the electrocaloric effect (ECE) in relaxor ferroelectric Pb0.85La0.1(Zr0.65Ti0.35)O3 (PLZT) prepared by the hot‐press sintering method has been investigated. Compared to the PLZTs prepared via the conventional sintering process, the hot‐pressed PLZTs exhibit larger ECE and superior temperature stability. The hot‐pressed sample with an appropriate content of excess PbO presents a high ΔT of 2.4°C and ΔS of 2.3 J kg?1·K?1, both of which are 30% greater than those of the conventionally sintered samples measured at 100 kV·cm?1. More importantly, the hot‐pressed specimens display great stable electrical properties, including the dielectric breakdown strength and electrical resistivity in the temperature range from 0°C to 100°C, whose ECE instability, especially, is only one‐half that of the samples prepared by the conventional solid‐state method. In addition, the ECE and its stability of the hot‐pressed sample can be further enhanced by increasing the operating electric field to a relatively high level of 200 kV·cm?1. This work demonstrates hot‐press sintering is an effective method to fabricate ferroelectric ceramics with high ECE as well as desirable temperature stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号