首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CaGd2(MoO4)4:Er3+/Yb3+ phosphors with the doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2, and Yb3+ = 0.2, 0.45) have been successfully synthesized by the microwave sol–gel method, and the crystal structure refinement and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after heat‐treatment at 900°C for 16 h, showed a well‐crystallized morphology. Under the excitation at 980 nm, CaGd2(MoO4)4:Er3+/Yb3+ particles exhibited strong 525 and 550‐nm emission bands in the green region and a weak 655‐nm emission band in the red region. The Raman spectrum of undoped CaGd2(MoO4)4 revealed about 15 narrow lines. The strongest band observed at 903 cm?1 was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedrons. The spectra of the samples doped with Er and Yb obtained under 514.5 nm excitation were dominated by Er3+ luminescence preventing the recording Raman spectra of these samples. Concentration quenching of the erbium luminescence at 2H11/24I15/2 and 4S3/24I15/2 transitions in the CaGd2(MoO4)4:Er3+/Yb3+ crystal structure was established to be approximately at the 10 at.% doping level.  相似文献   

2.
《Ceramics International》2020,46(11):18614-18622
Studies on lanthanide ions doped upconversion nanomaterials are increasing exponentially due to their widespread applications in various fields such as diagnosis, therapy, bio-imaging, anti-counterfeiting, photocatalysis, solar cells and sensors, etc. Here, we are reporting upconversion luminescence properties of NaBi(MoO4)2:Ln3+, Yb3+ (Ln = Er, Ho) nanomaterials synthesized at room temperature by simple co-precipitation method. Diffraction and spectroscopic studies revealed that these nanomaterials are effectively doped with Ln3+ ions in the scheelite lattice. DR UV–vis spectra of these materials exhibit two broad bands in the range of 200–350 nm correspond to MoO42− charge transfer, s-p transition of Bi3+ ions and sharp peaks due to f-f transition of Ln3+ ions. Upconversion luminescence properties of these nanomaterials are investigated under 980 nm excitation. Doping concentration of Er3+ and Yb3+ ions is optimized to obtain best upconversion photoluminescence in NaBi(MoO4)2 nanomaterials and is found to be 5, 10 mol % for Er3+, Yb3+, respectively. NaBi(MoO4)2 nanomaterials co-doped with Er3+, Yb3+ exhibit strong green upconversion luminescence, whereas Ho3+, Yb3+ co-doped materials show strong red emission. Power dependent photoluminescence studies demonstrate that emission intensity increases with increasing pump power. Fluorescence intensity ratio (FIR) and population redistribution ability (PRA) of 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 transitions of Er3+ increases with increasing the Yb3+ concentration. Also, these values increase linearly with increasing the pump power up to 2 W. It reveal that these thermally coupled energy levels are effectively redistributed in co-doped samples due to local heating caused by Yb3+.  相似文献   

3.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

4.
A class of Yb3+/Er3+ co‐doped NaY(MoO4)2 upconversion (UC) phosphors have been successfully synthesized by a facile hydrothermal route with further calcination. The structural properties and the phase composition of the samples were characterized by X‐ray diffraction (XRD). The UC luminescence properties of Yb3+/Er3+ co‐doped NaY(MoO4)2 were investigated in detail. Concentration‐dependent studies revealed that the optimal composition was realized for a 2% Er3+ and 10% Yb3+‐doping concentration. Two‐photon excitation UC mechanism further illustrated that the green enhancement arised from a novel energy‐transfer (ET) pathway which entailed a strong ground‐state absorption of Yb3+ ions and the excited state absorption of Yb3+–MoO42? dimers, followed by an effective energy transfer to the high‐energy state of Er3+ ions. We have also studied the thermal properties of UC emissions between 303 and 523 K for the optical thermometry behavior under a 980 nm laser diode excitation for the first time. The higher sensitivity for temperature measurement could be obtained compared to the previous reported rare‐earth ions fluorescence based optical temperature sensors. These results indicated that the present sample was a promising candidate for optical temperature sensors with high sensitivity.  相似文献   

5.
《Ceramics International》2016,42(5):5635-5641
A series of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors were synthesized through a solid-sate reaction method. The X-ray diffraction (XRD), upconversion (UC) emission and cathodoluminescence (CL) measurments were applied to characterize the as-prepared samples. Under the excitation of 980 nm light, bright green UC emissions corresponding to (2H11/2,4S3/2)→4I15/2 transitions of Er3+ ions were observed and the UC emission intensities showed an upward trend with increasing the Yb3+ ion concentration, achieving its optimum value at 25 mol%. Furthermore, the temperature sensing behavior based on the thermally coupled levels (2H11/2,4S3/2) of Er3+ ions was analyzed by a fluorescence intensity ratio technique. It was found that the obtained samples can be operated in a wide temperature range of 133–773 K with a maximum sensitivity of approximately 0.0112 K−1 at 515 K. Ultimately, strong CL properties were observed in NaY(WO4)2:0.01Er3+/0.25Yb3+ phosphors and the CL emission intensity increased gradually with the increment of accelerating voltage and filament current.  相似文献   

6.
Uniform and well‐crystallized NaGd(MoO4)2: Yb3+/Er3 + microcrystals with tetragonal plate morphology were synthesized by a facile hydrothermal method. The structure and phase purity of the samples were identified by powder XRD analysis. The steady‐state and transient luminescence spectra were measured and analyzed. Under 980 nm excitation, intense green luminescence at 531 and 553 nm, and red luminescence at 657 and 670 nm were observed. The optimum doping concentrations for Yb3+ and Er3+ are determined to be 20% and 1% in NaGd(MoO4)2 tetragonal plate microcrystals. With increasing Yb3+ doping concentrations, the total integral emission intensities increase first and then decrease. The red/green intensity ratio of NaGd(MoO4)2: Yb3+/Er3+ microcrystals increases from 0.4 to 1.0 with the increase in Yb3+ concentrations. Based on the energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the double logarithmic plot of upconversion intensities versus pump powers. The energy‐transfer mechanisms for green and red upconversion luminescence are ascribed to two‐photon processes at lower Yb3+ concentrations, and involve high‐Yb3+‐induced one‐photon processes at higher Yb3+ concentrations. For the red upconversion luminescence, energy back‐transfer process, that is, 4S3/2 (Er3+) + 2F7/2 (Yb3+) → 4I13/2 (Er3+) + 2F5/2 (Yb3+), is dominant at higher Yb3+ concentrations. Theoretical model of the energy‐transfer mechanisms based on rate equations is established, which agrees well with the experimental results.  相似文献   

7.
The nanocrystalline single-phase Er3+-doped Yb3Ga5O12 garnets have been prepared by the sol-gel combustion technique with a crystallite size of ≈30 nm. The presence of Yb3+ in garnet hosts allows their efficient excitation at the ≈977 nm wavelength. The Er3+ doping of Yb3Ga5O12 garnet host results in deep red Er3+: 4F9/2 → 4I15/2 upconversion photoluminescence (UCPL) emission. The dominance of the red UCPL emission over the green Er3+: 4F7/2/2H11/2/4S3/2 → 4I15/2 component was investigated using the measurement of the steady-state and time-dependent Er3+ and Yb3+ emission spectra in combination with the power-dependent UCPL emission intensity. The proposed upconversion mechanism is discussed in terms of the Er3+ → Yb3+ energy back transfer process as well as Yb3+(Er3+) → Er3+ energy transfer and Er3+ ↔ Er3+ cross-relaxation processes. The studied Er3+-doped Yb3Ga5O12 garnet may be utilized as a red upconversion emitting phosphor.  相似文献   

8.
《Ceramics International》2017,43(16):13505-13515
ZnO-TiO2 composites co-doped with Er3+ and Yb3+ ions were successfully synthesized by powder-solution mixing method and their upconversion (UC) luminescence was evaluated. The effect of firing temperature, ZnO/TiO2 mixing ratio, and dopant concentration ranges on structural and UC luminescence properties was investigated. The crystal structure of the product was studied and calculated in detail by means of X-ray diffraction (XRD). Also, the site preference of Er3+ and Yb3+ ions in the host material was considered and analyzed based on XRD results and UC luminescence characteristics. Brightest UC luminescence was observed in the ZnO-TiO2:Er3+,Yb3+ phosphor fired at 1300 °C in which the system consisted of mixed phases; Zn2TiO4, TiO2, RE2Ti2O7 and RE2TiO5 (RE = Er3+ and/or Yb3+). Under the excitation of a 980 nm laser, the two emission bands were detected in the UC emission spectrum, weak green band centered at 544 and 559 nm, and strong red band centered at 657 and 675 nm wavelengths in accordance with 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ion, respectively. The simple chemical formula equations, for explaining the site preference of Er3+ and Yb3+ ions in host crystal matrix, were generated by considering the Zn2TiO4 crystal structure, its crystal properties, and the effect of Er3+ and Yb3+ ions to the host crystal matrix. The UC emission intensity of the products was changed by varying ZnO/TiO2 mixing ratios, and Er3+ and Yb3+ concentrations. The best suitable condition for emitting the brightest UC emission was 1ZnO:1TiO2 doped with 3 mol% Er3+, 9 mol% Yb3+ fired at 1300 °C for 1 h.  相似文献   

9.
Er3+-activated NaSrLa(MoO4)O3 phosphors were synthesized by a traditional solid-state reaction technique, which exhibited bright green emissions ascribing to the (2H11/2, 4S3/2) → 4I15/2 transitions of Er3+ ions under 377 nm excitation. The luminescence intensity increased with increasing the Er3+ ion concentration and achieved its maximum value when the doping concentration was 4 mol%. Moreover, the critical distance was estimated to be 25.32 Å, and the dipole-dipole interaction played a significant role in NR energy transfer between Er3+ ions in NaSrLa(MoO4)O3 host lattices. At a forward bias current of 100 mA, the Light Emitting Diode (LED) device emitted a bright green emission with the color coordinate of (0.2547, 0.5996) that can be observed by the naked eye. Besides, based on the thermally coupled levels of 2H11/2 and 4S3/2, the temperature sensing performances of the prepared phosphors in the temperature range of 303-483 K were studied using the fluorescence intensity ratio technique. The maximum sensor sensitivity was about 0.0150 K−1 when the temperature was 483 K, and the Er3+ ion concentration largely influenced the sensor sensitivity of studied samples. Furthermore, the prepared phosphors exhibited excellent water resistance and thermal stability behavior. These characteristics demonstrated that the Er3+ activated NaSrLa(MoO4)O3 phosphors were dual-functional materials for solid-state illumination and non-contact temperature measurement.  相似文献   

10.
A conventional high temperature solid state method was utilized to prepare CaO-Y2O3, which is a potential candidate for manufacturing crucible material to melt titanium and titanium alloys with low cost. Meanwhile, Yb3+ ions and Er3+ ions were selected as the sensitizers and activators respectively to dope into CaO-Y2O3, aimed at providing real-time optical thermometry during the preparation process of titanium alloys realized using fluorescence intensity ratio (FIR) technology. The results reveal that a high measurement precision can be acquired by using the Stark sublevels of Er3+ 4F9/2 to measure the temperature with a maximum absolute error of only about 3 K. In addition, by analyzing the dependence of 4I13/2 → 4I15/2 transition on pump power of 980 nm excitation wavelength, it was found that the laser-induced thermal effect has almost no influence on the temperature measurement conducted by using the FIR of the Stark sublevels of Er3+ 4I13/2, which means that a high excitation pump power can be used to obtain strong NIR emission and good signal-to-noise ratio for optical thermometry without the influence of the laser-induced thermal effect. All the results reveal that CaO-Y2O3: Yb3+/Er3+ is an excellent temperature sensing material with high measurement precision.  相似文献   

11.
Yb3+/Er3+ codoped La2S3 upconversion (UC) phosphors have been synthesized using high‐temperature solid‐state method. Under 971‐nm excitation, the maximum luminescence power can reach 0.64 mW at the excitation power density of 16 W/cm2 and an absolute power yield of 0.36% was determined by an absolute method at the excitation power density of 3 W/cm2, and the quantum yield of La2S3:Yb3+, Er3+ (green ~0.18%, red ~0.03%, integration ~0.21) was comparable to that of NaYF4:Yb3+, Er3+ nanocrystals (integration ~0.005–0.30). Frequency upconverted emissions from two thermally coupled excited states of Er3+ were recorded in the temperature range 100–900 K. The maximum sensitivity of temperature sensing is 0.0075 K?1. As the excitation power density increases, the temperature of host materials rapidly rises and the top temperature can reach to 600 K. Given the intense UC emission, high sensitivity, as well as good photothermal stability, La2S3:Yb3+/Er3+ phosphor can become a promising composite material for photothermal ablation of cancer cells possessing the functions of temperature sensing and in vivo imaging.  相似文献   

12.
Uniform spindle-like micro-rods NaLa(WO4)2:Yb3+,Er3+ phosphors are prepared by the solvothermal method in the text. Controllable morphology of NaLa(WO4)2 crystal can be obtained by adjusting the prepared temperature, PH value, complexing agent content, and solvent ratio. Uniform NaLa(WO4)2:Yb3+,Er3+ micro-rods of 1.8 μm in length and 0.5 μm in width are synthesized at a low temperature of 120°C. The prepared NaLa(WO4)2:Yb3+,Er3+ phosphors present green upconversion luminescence under 980 nm excitation, luminescence intensity reaches to maximum at the Yb3+ and Er3+ concentration of 6 and 2 mol%. The temperature performance of the NaLa(WO4)2:Yb3+,Er3+ phosphors are evaluated based on thermal coupling technology. Temperature dependence of the two green emissions ratio of Er3+ ion is obtained, and the sensitivity of the sample can be calculated, the maximum sensitivity of NaLa(WO4)2:Yb3+,Er3+ is up to 0.019 K−1 at the sample temperature of 564 K.  相似文献   

13.
《Ceramics International》2020,46(13):20664-20671
Trivalent Er3+-doped La2(MoO4)3 upconversion phosphors with intense green emmision were synthesized at 800 °C by the solid-state reaction route, promoting the development of novel optical thermometry. The color emitted from the samples was minorly affected by the excitation power and doping concentration. Yb3+ is a better sensitizer for the La2(MoO4)3: Er3+ phosphor and it can enhance the emission intensity when a certain amount is co-doping in the system. The up-conversion luminescent mechanism was investigated using the pump power-dependent UC emission spectra. Alkali metal doping increased the up-conversion emission intensities drastically, and Li+ ions can enhance the luminous intensity by more than 20 times. The fluorescence intensity ratio of the transition emission 2H11/2-4I15/2 and 4S3/2-4I15/2 was used to study upconversion optical temperature sensing. The sensitivity changes from doping with diverse alkali metal ions and their effects on the optimal temperature range are discussed in detail. Alkali metal ions doping extended the temperature range, indicating that this phosphor is a potential candidate for temperature-sensing probes.  相似文献   

14.
Er3+,Yb3+ co-doped CaWO4 polycrystalline powders were prepared by a solid-state reaction and their up-conversion (UC) luminescence properties were investigated in detail. Under 980 nm laser excitation, CaWO4: Er3+,Yb3+ powder exhibited green UC emission peaks at 530 and 550 nm, which were due to the transitions of Er3+ (2H11/2)→Er3+ (4I15/2) and Er3+ (4S3/2)→Er3+ (4I15/2), respectively. Effects of Li+ tri-doping into CaWO4: Er3+,Yb3+ were investigated. The introduction of Li+ ions reduced the optimum calcinations temperature about 100 °C by a liquid-phase sintering process and the UC emission intensity was remarkably enhanced by Li+ ions, which could be attributed to the lowering of the symmetry of the crystal field around Er3+ ions.  相似文献   

15.
16.
A series of Er3+/Yb3+ co-doped Cs3GdGe3O9 (CGG) phosphors were prepared by solid-phase sintering method, and the microstructure and upconversion luminescence (UCL) properties were tested by variable-temperature X-ray diffractometry and variable-temperature spectrometer. Abnormal UCL phenomena were found, which include UCL intensity continuously increasing under 980 nm laser continuous irradiation and UCL thermal enhancement. After 10 min of continuous irradiation by 980 nm laser at 513 K, the UCL intensity increased 2.91 times compared with the initial UCL intensity. The phenomenon is due to the electron releasing of host defects. The green UCL intensity of CGG:0.1Er3+/0.2Yb3+ decreases at 303–423 K and increases at 423–723 K, which reaches 13.23 times compared with that at 423 K. The phenomenon is due to Er3+–Yb3+ distance change by temperature and phonon-assisted transitions. In addition, the absolute temperature sensitivities of samples are calculated by luminescence intensity ratio technology, the maximum absolute sensitivity of CGG:0.1Er3+/0.4Yb3+ is 0.00691 K−1 at 546 K, and the maximum relative sensitivity of CGG:0.1Er3+/0.1Yb3+ is 0.01224 K−1 at 303 K. These results indicate that CGG:Er3+/Yb3+ phosphors can be used as a high-temperature optical thermometer.  相似文献   

17.
The color‐tunable up‐conversion (UC) emission and infrared photoluminescence and dielectric relaxation of Er3+/Yb3+ co‐doped Bi2Ti2O7 pyrochlore thin films prepared by a chemical solution deposition method have been investigated. The pyrochlore phase structure of Bi2Ti2O7 can be stabilized by Er3+/Yb3+ co‐doping. Intense color‐tunable UC emission and infrared photoluminescence can be detected on the thin films excited by a 980 nm diode laser. Two UC emission bands centered at 548 and 660 nm in the spectra can be assigned to 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ions, respectively. A Stokes infrared emission centered at 1530 nm is due to 4I13/24I15/2 transition of Er3+ ions. The dependence of UC emission intensity on pumping power indicates that the UC emission of the thin films is a two‐photon process. The thin films also exhibit a relatively high dielectric constant and a low dissipation factor as well as a good bias voltage stability. Temperature‐ and frequency‐dependent dielectric relaxation has been confirmed. This study suggests that Er3+/Yb3+ co‐doped Bi2Ti2O7 thin films can be applied to new multifunctional photoluminescence dielectric thin‐film devices.  相似文献   

18.
Upconversion (UC) peak of 4S3/24I15/2 transition of Er3+ is close to that of 2H11/24I15/2 transition. The UC emission splitting of Er3+ caused by coordination fields of host results in that it is difficult to confirm which transitions (4S3/24I15/2 or 2H11/24I15/2) are responsible for the splitting UC emission peaks. In this work, the UC luminescence peaks located at 524, 540, 551, 565, 662, 677, and 683 nm were observed in the Ba2Y(BO3)2Cl:Yb3+, Er3+ phosphor upon the 980 nm excitation. The 524 and 540 nm UC emissions intensity were increased, while the 551 and 565 nm UC emissions intensity were decreased with the temperature increasing from 323 to 573 K, which is attributed to the phonon‐assisted population inversion from the 4S3/2 to 2H11/2 level. The temperature dependence of UC emission spectra demonstrated that the 524 and 540 nm UC emissions are from 2H11/24I15/2 transition, and 551 and 565 nm UC emissions are from the 4S3/24I15/2 transition. Temperature sensing property was characterized by the UC intensity ratio of the 2H11/24I15/2 transition to 4S3/24I15/2 transition. The Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor has potential application as the non‐contact temperature sensor.  相似文献   

19.
《Ceramics International》2017,43(12):8879-8885
The present paper focuses on near infrared (NIR) down-conversion photoluminescence (PL) properties by studying the energy transfer mechanism between Er3+ and Yb3+ in CaMoO4:Er3+, Yb3+ phosphors. We have successfully synthesized a series of Er3+ doped and Yb3+ codoped CaMoO4 phosphors by hydrothermal method. The down-conversion of Er3+-Yb3+ combination with CaMoO4 phosphor is designed to overcome the energy losses due to spectral mismatch when a high energy photon is incident on the Si-solar cell. The XRD, FESEM, EDX, PL, UV–Vis, Lifetime measurements were carried out to characterize the prepared down-converting phosphors. The crystallinity and surface morphology were studied by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The down-conversion PL spectra have been studied using 380 nm excitation wavelength. The Er3+ doped phosphors exhibit hypersensitive emission at 555 nm in the visible region due to 4S3/24I15/2 transition. The addition of Yb3+ into Er3+ doped CaMoO4 attribute an emission at 980 nm due to 2F5/22F7/2 transition. The decrease in emission intensity in visible region and increase in NIR region reveals the energy transfer from Er3+ to Yb3+ through cross relaxation. The UV–Vis–NIR spectra shows the strong absorption peak around 1000 nm due to Yb3+ ion. The lifetime measurement also reveals the energy transfer from Er3+ to Yb3+ ions. The maximum value of energy transfer efficiency (ETE) and corresponding theoretical internal quantum efficiency are estimated as 74% and 174% respectively.  相似文献   

20.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号