首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high performance and low cost C/C–ZrC composite was prepared by chemical vapor infiltration combined with zirconium–silicon (Zr: 91.2 at.%; Si: 8.8 at.%) alloyed reactive melt infiltration. The density of the as-received composite is 2.46 g/cm3 and the open porosity is 5%. Due to the reaction between the pyrolytic carbon and Zr–Si alloy in the composite, ZrC and Zr2Si phases were formed, the formation and distribution of which were investigated by thermodynamics and phase diagram. The as-received C/C–ZrC composite, with the flexural strength of 239.5 MPa, displayed a pseudo-ductile fracture behavior. Ablation properties of the C/C–ZrC composite were tested by a pulse laser. The linear ablation rate was 0.028 mm/s. A ZrO2 barrier layer was formed on the ablation surface and the composite presented excellent ablation resistance.  相似文献   

2.
A high performance and low cost C/C–SiC composite was prepared by Si–10Zr alloyed melt infiltration. Carbon fiber felt was firstly densified by pyrolytic carbon using chemical vapor infiltration to obtain a porous C/C preform. The eutectic Si–Zr alloyed melt (Zr: 10 at.%, Si: 90 at.%) was then infiltrated into the porous preform at 1450 °C to prepare the C/C–SiC composite. Due to the in situ reaction between the pyrolytic carbon and the Si–Zr alloy, SiC, ZrSi2 and ZrC phases were formed, the formation and distribution of which were investigated by thermodynamics. The as-received C/C–SiC composite, with the flexural strength of 353.6 MPa, displayed a pseudo-ductile fracture behavior. Compared with the C/C preform and C/C composite of high density, the C/C–SiC composite presented improved oxidation resistance, which lost 36.5% of its weight whereas the C/C preform lost all its weight and the high density C/C composite lost 84% of its weight after 20 min oxidation in air at 1400 °C. ZrO2, ZrSiO4 and SiO2 were formed on the surface of the C/C–SiC composite, which effectively protected the composite from oxidation.  相似文献   

3.
《Ceramics International》2016,42(15):16906-16915
An improved reactive melt infiltration (RMI) route using Zr, Si tablet as infiltrant was developed in order to obtain high-performance and low-cost C/C-ZrC-SiC composite with well defined structure. Two other RMI routes using Zr, Si mixed powders and alloy were also performed for comparison. Effects of different infiltration routes on the microstructure and ablation behavior were investigated. Results showed that C/C-ZrC-SiC composite prepared by Zr, Si tablets developed a dense gradient microstructure that content of ZrC ceramic increased gradually along the infiltration direction, while that of SiC ceramic decreased. Composites prepared by Zr, Si mixed powders and alloy showed a homogeneous microstructure containing more SiC ceramic. In addition, two interface patterns were observed at the carbon/ceramic interfaces: continuous SiC layer and ZrC, SiC mixed layers. It should be due to the arising of stable Si molten pool in the tablet. Among all as-prepared samples, after exposing to the oxyacetylene flame for 60 s at 2500 °C, C/C-ZrC-SiC composite infiltrated by Zr, Si tablet exhibited the best ablation property owing to its unique gradient structure.  相似文献   

4.
《Ceramics International》2015,41(7):8488-8493
Cf/ZrC–SiC composites were fabricated by melt infiltration at 1800 °C using Zr–8.8Si alloy and carbon felt preforms. Microstructural analysis showed the formation of both ZrC and SiC phases in the matrix, in which ZrC acted as a main composition of the resulting composites. The results showed that carbon matrix reacted preferentially with Si of Zr–8.8Si alloy, which caused the formation of SiC first and then ZrC. The designed carbon coating by pyrolysis prevented the severe reaction between fibers and the melt. The composites could be more dense and uniform with the bending strength of 53.3 MPa, when preforms had a high open porosity (47.2%) with small size pores (10–40 μm).  相似文献   

5.
《应用陶瓷进展》2013,112(5):307-310
Abstract

Carbon fibre reinforced C and SiC binary ceramic matrix composites (C/C–SiC) were fabricated by a quick and low cost reactive melt infiltration (RMI) method with Si–Zr25 and Si melts. Effects of zirconium addition in infiltrated Si melt on microstructure and ablation resistance of the composite were investigated. The composite by Si–Zr25 melt infiltration was composed of SiC, ZrC, C and a little amount of ZrSi2 without residual silicon, overcoming the problem of residual silicon in C/C–SiC composite by Si RMI. Compared with the composite by Si melt infiltration, the ablation resistance of the composite by Si–Zr25 was greatly improved by zirconium addition due to ZrO2 and SiO2 protecting layer formed during ablation.  相似文献   

6.
Reactive melt infiltration based on alloy design is proposed in the present work for preparing HfC-based coating on C/C composite substrate. A 50Hf10Zr40Si alloy ingot was prepared and infiltrated into a C/C preform at temperatures much lower than the melting point of the alloy to obtain the HfC-based coating. An obvious layered microstructure of the coating was formed. The carbonization reactions occurring between Hf and carbon of the surface layer of the C/C composite is the primary reason for the reactive melt infiltration process to proceed at relative low temperatures. Acetylene flame test showed that the HfC-based coating protected the C/C composite from serious oxidation.  相似文献   

7.
Layer‐structured interphase, existing between carbon fiber and ultrahigh‐temperature ceramics (UHTCs) matrix, is an indispensable component for carbon fiber reinforced UHTCs matrix composites (Cf/UHTCs). For Cf/UHTCs fabricated by reactive melt infiltration (RMI), the interphase inevitably suffers degradation due to the interaction with the reactive melt. Here, Cf/SiC–ZrC–ZrB2 composite was fabricated by reactive infiltration of ZrSi2 melt into sol‐gel prepared Cf/B4C–C preform. (PyC–SiC)2 interphase was deposited on the fiber to investigate the degradation mechanism under ZrSi2 melt. It was revealed that the degraded interphase exhibited typical features of Zr aggregation and SiC residuals. Moreover, the Zr species diffused across the interphase and formed nanosized ZrC phase inside the fiber. A hybrid mechanisms of chemical reaction and physical melting were proposed to reveal the degradation mechanism according to characterization results and heat conduction calculations. Based on the degradation mechanism, a potential solution to mitigate interphase degradation is also put forward.  相似文献   

8.
A Zr–Si liquid reacted with B4C in a graphite enclosure was configured to control the oxygen potential (10?45 kPa) to form a ZrB2 / ZrC / Zr – Si ceramic composite. The graphite enclosure was placed in a temperature gradient with the hot zone at >2133 K to react Zr – Si with B4C and with the opposite end approximating 933–1000 K at the position of an aluminum melt. A ZrB2 / ZrC / Zr – Si composite forms with the scanning‐electron microscope (SEM), microstructures showing rectangular ZrB2 precipitates and hexagonally shaped ZrC precipitates embedded in a Zr – Si matrix.  相似文献   

9.
Reaction of ZrC with Pd at temperatures up to 1500°C was examined using ZrC/Pd composite, Pd/ZrC‐coated TRISO particles, and Pd/ZrC bulk diffusion couples experiments. Intermetallic phase (Pd3Zr) and amorphous carbon at the ZrC–Pd interfaces were identified by X‐ray diffraction (XRD), Raman and scanning electron microscope (SEM). Moreover, thicknesses of Pd3Zr layers were measured by energy‐dispersive X‐ray spectrometry (EDS). The validity of the reaction was proved by thermodynamic calculation. The reaction kinetics parameters, i.e., the activation energy (208.2–266.5 kJ/mol) and the reaction order (3.38–3.78) for Pd attacking through a ZrC coating in TRISO particles were determined based on both the DSC curves and the growth of the Pd3Zr layer.  相似文献   

10.
Ablation resistance of C/C-SiC composite prepared via Si-Zr alloyed reactive melt infiltration was evaluated using a facile and economical laser ablation method. Linear ablation rates of the composite increased with an increase in laser power densities and decreased with extended ablation time. The C/C-SiC composite prepared via Si-Zr alloyed melt infiltration presented much better ablation resistance compared with the C/SiC composite prepared by polymer infiltration and pyrolysis process. The good ablation resistance of the composite was attributed to the melted ZrC layer formed at the ablation center region. Microstructure and phase composition of different ablated region were investigated by SEM and EDS, and a laser ablation model was finally proposed based on the testing results and microstructure characterization. Laser ablation of the composite experienced three distinct periods. At the very beginning, the laser ablation was dominated by the oxidation process. Then for the second period, the laser ablation was dominated by the evaporation, decomposition and sublimation process. With the further ablation of the composite, chemical stable ZrC was formed on the ablated surface and the laser ablation was synergistically controlled by the scouring away of ZrC melts and evaporation, decomposition and sublimation process.  相似文献   

11.
Homogenous liquid precursor for ZrC–SiC was prepared by blending of Zr(OC4H9)4 and Poly[(methylsilylene)acetylene]. This precursor could be cured at 250°C and converted into binary ZrC–SiC composite ceramics upon heat treatment at 1700°C. The pyrolysis mechanism and optimal molar ratio of the precursor were investigated by XRD. The morphology and elements analyses were conducted by SEM and corresponding energy‐dispersive spectrometer. The evolution of carbon during ceramization was studied by Raman spectroscopy. The results showed that the precursor samples heat treated at 900°C consisted of t‐ZrO2 (main phase) and m‐ZrO2 (minor phase). The higher temperature induced phase transformation and t‐ZrO2 converted into m‐ZrO2. Further heating led to the formation of ZrC and SiC due to the carbothermal reduction, and the ceramic sample changed from compact to porous due to the generation of carbon oxides. With the increasing molar ratios of C/Zr, the residual oxides in 1700°C ceramic samples converted into ZrC and almost pure ZrC–SiC composite ceramics could be obtained in ZS‐3 sample. The Zr, Si, and C elements were well distributed in the obtained ceramics powders and particles with a distribution of 100 ~ 300 nm consisted of well‐crystallized ZrC and SiC phases.  相似文献   

12.
Ultra-high temperature ceramic-modified C/C composites (C/C-UHTCs) were prepared by the reactive infiltration of K2MeF6 (Me = Zr, Ti) mixed with Si and Zr-Si powders. Molten salt infiltration can be divided into two stages: salt ion melt and Me-Si alloy melt. In the temperature range below 1400 °C, Zr and Si dissolve in the molten salt, are carried by the ion melt, and precipitate at the PyC interface to form carbides. Above 1400 °C, a large amount of molten salt volatilises and thermally decomposes. The Me-Si alloy forms a melt and infiltrates the C/C matrix, and finally forms C/C-ZrC-SiC, C/C-Ti3SiC2-SiC, and C/C-ZrC-TiC-SiC composites. The C/C-ZrC-SiC composite with the highest ZrC content exhibited the lowest mass rate (2.6 ± 0.02 mg/s) and linear ablation rate (0.82 ± 0.04 μm/s), which were reduced by 43.5 and 50.8 %, respectively, compared to the unmodified C/C-ZrC-SiC composite.  相似文献   

13.
C/C–ZrC composites were prepared by isothermal chemical vapor infiltration (ICVI) combined with reactive melt infiltration (RMI). The ablation behavior of the C/C–ZrC was investigated using an oxyacetylene flame. The effect of ablation time on the microstructure and mechanical property evolution of the composite was studied. The results showed that as the ablation time prolonged, the linear and mass ablation rates of the composite increased firstly and then stabilized. After 15 s ablation, the flexural strength and modulus of the C/C–ZrC were interestingly increased by 141.8% and 40.9%, which reached 138.42 MPa and 6.45 GPa, respectively. During ablation, the preferential oxidation effect of ZrC could mitigate the oxidation of pyrolytic carbon (PyC) and carbon fibers, and the volume change induced by the ZrC →ZrO2 phase transformation could weaken its bonding with PyC, which was beneficial for releasing the internal residual stresses of the C/C–ZrC and then contributed to the mechanical performance improvement.  相似文献   

14.
ZrC–SiC powders are synthesized by high‐temperature pyrolysis of hybrid liquid precursors, which are prepared from organic Zr‐containing precursor (PZC) and liquid polycarbosilane (LPCS). Due to the excellent miscibility between PZC and LPCS, the hybrid liquid precursors are formed by dissolving PZC into LPCS without adding organic solvent. The viscosity and elemental content of Zr and Si of the hybrid precursors are readily adjustable by controlling the LPCS/PZC mass ratio. SEM and TEM observations reveal that the ZrC–SiC powders pyrolyzed at 1550°C exhibit spherical morphology with characteristic dimension of less than 60 nm, and the two phases are uniformly distributed in composite powders. The advantage of the ZrC–SiC powders synthesized by this novel method is demonstrated by investigating the oxidation behavior of powders with different amount of SiC and ZrC. Below 700°C, ZrC quickly oxidizes to generate an almost nonprotective ZrO2 scale, whereas at ~ 1000°C, dense and protective SiO2 forms that improves the oxidation resistance of the ZrC–SiC composite powders.  相似文献   

15.
A new kind of polyorganozircosilazane as a Si/Zr/C/N‐based ceramic precursor was synthesized from the condensation reaction of hexamethylcyclotrisilazane lithium salts and zirconium tetrachloride. The pyrolysis of the precursor was carried out at 800°C under nitrogen. The results indicated that the precursor preparation temperature could affect the pyrolytic yields. The precursor, which was synthesized at 80°C, gave the highest pyrolytic yield. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2080–2082, 2003  相似文献   

16.
《Ceramics International》2023,49(1):707-715
In this study, ZrC–SiC composite ceramics were prepared with varying Zr/Si molar ratios using sol–gel method. Composites were characterized by Fourier-transform infrared spectroscopy (FT–IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). FT–IR analysis confirmed macromolecular network structure of composites, in which the precursor is composed of polyvinyl butyral (PVB) as main chain, silane molecules are interlinked via –OH moieties in PVB side chains, and Zr atoms are crosslinked with Si in corresponding proportion. Ceramic precursor begins to decompose at a temperature exceeding 1300 °C and is completely transformed into ZrC–SiC composite ceramics with corresponding Zr/Si molar ratio at 1600 °C. Raman spectroscopy and TEM results reveal that after annealing at 1600 °C, ZrC powder uniformly covers surface of SiC ceramics, and high-crystallinity graphite carbon covers ZrC powder.  相似文献   

17.
Composites of ZrC–SiC with relative densities in excess of 98% were prepared by reactive hot pressing of ZrC and Si at temperature as low as 1600°C. The reaction between ZrC and Si resulted in the formation of ZrC1?x, SiC, and ZrSi. Low‐temperature densification of ZrC?SiC ceramics is attributed to the formed nonstoichiometric ZrC1?x and Zr–Si liquid phase. Adding 5 wt% Si to ZrC, the three‐point bending strength of formed ZrC0.8–13.4 vol%SiC ceramics reached 819 ± 102 MPa with hardness and toughness being 20.5 GPa and 3.3 MPa·m1/2, respectively.  相似文献   

18.
Environmentally friendly commercial applications spurred us to screen a suitable ablative throat material for the hybrid rocket, while preserving its cost-effective advantages as a special chemical motor. In this research, two types of carbon fiber reinforced composites, i.e. carbon/carbon (C/C) composite and Cf/C–SiC–ZrC composite utilized in high temperature environment, were employed to make the hybrid rocket nozzle. By comparison with the high-density graphite, the anti-ablation properties under the firing environment of Ф100mm H2O2-polyethylene hybrid rocket motor were characterized. We used whole felt preform to make C/C composite, whose matrix carbon was coming from chemical vapor infiltration of propylene; and the Cf/C–SiC–ZrC composite, which employs the same whole felt preform to make the low-density C/C billet, by infiltrated with Si and Zr organic precursors and pyrolysis at elevated temperatures repeatedly to make the advanced ceramic matrix composite. The firing test lasted 40s for all the candidate materials and the result indicated that the Cf/C–SiC–ZrC composite, whose average linear ablation rate was only 0.003 mm/s, was the most stable one in the firing environment. The SEM images gave detailed morphologies of those nozzle throat materials and proved that the fiber architecture, together with the glassy ceramic oxide, helped the nozzle to withstand the hybrid motor firing environment.  相似文献   

19.
The kinetic role of C/Zr ratio in the reaction processes, combustion behaviors, and synthesized products of 70 wt.% (xC–Zr)–30 wt.% Cu was investigated. Results indicated that ZrC particles were produced by the replacement reaction between carbon atoms and Zr–Cu melt. With an increase in C/Zr ratio, more carbon atoms combined with the zirconium atoms in Zr–Cu liquid. As a result, the formation rate of massive ZrC enhanced, which shortened the ignition time of combustion reaction. On the other hand, the quantity, the lattice parameter, and the x value of synthetic ZrCx increased, while the byproduct CuyZrx compounds decreased. These effects contributed to an increase in the burning temperature and ZrCx particle size. Moreover, it is also revealed that the formation of ZrCx is a multistep process, which leads to an inhomogeneous distribution of the particle size. Results from this work offer a theoretical reference for the kinetic research of combustion synthesis and related techniques, and provide a valuable guide to the in situ synthesis of composite materials containing ZrC.  相似文献   

20.
Structural evolution and crystallization behavior between 600°C and 1450°C during the preparation of bulk SiC/B4C/C nanocomposites by the pyrolysis of CB‐PSA preceramic were investigated. The CB‐PSA preceramic converts into carbon‐rich Si–B–C ceramics up to 800°C. Structural evolution and crystallization of Si–B–C materials could be controlled by adjusting the pyrolytic temperature. The Si–B–C ceramics are amorphous between 800°C and 1000°C. Phase separation and crystallization begin at 1100°C. The crystallization of β‐SiC takes place at 1100°C and B4C nanocrystallites generate at 1300°C. The sizes of β‐SiC and B4C nanocrystals increase with the pyrolytic temperature rising. In addition, the boron‐doping effect on structural evolution was studied by comparing the crystallization and graphitization behavior of Si–B–C ceramics and the corresponding Si–C materials. Boron is helpful for the growth of β‐SiC nanocrystals and the graphitization, but harmful for the nucleation of β‐SiC crystallites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号