首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐type Bi2O2Se has a bright prospect for mid‐temperature thermoelectric applications on account of the intrinsically low thermal conductivity. However, the low carrier concentration of Bi2O2Se (~1015 cm?3) severely limits its thermoelectric performance. Herein, the boosting of the carrier concentration to ~1019 cm?3 can be realized in our La‐doped Bi2O2Se ceramic samples, which could be ascribed to the formation of isoelectronic traps and the narrowing of band gap, and contribute to a marked increase in the electrical conductivity (from 0.03 S cm?1 to 182 S cm?1). Our X‐ray absorption near‐edge structure spectra results reveal that a local disordering of oxygen atoms could be an important reason for the intrinsically low thermal conductivity of Bi2O2Se, and the point defects can also suppress the lattice thermal conductivity in La‐doped Bi2O2Se. The ZT value can be enhanced by a factor of ~4.5 to 0.35 at 823 K for Bi1.98La0.02O2Se as compared to the pristine Bi2O2Se. The coordinated optimization of electrical and thermal properties demonstrates an effective method for the rational design of high‐performance thermoelectric materials.  相似文献   

2.
The Bi2O2Se-based compounds with an intrinsically low thermal conductivity and relatively high Seebeck coefficient are good candidates for thermoelectric application. However, the low electrical conductivity resulted from carrier concentration of only 1015?cm?3 for pristine material, which is too low for optimized thermoelectrics. As a result, the carrier concentration optimization of Bi2O2Se is important and useful to achieve higher power factor. In this work, the effect of Ge-doping at the Bi site has been investigated systematically, with expectations of carrier concentration optimization. It is found that Ge doping is an efficient method to increase carrier concentration. Due to the largely increased carrier concentration via Ge doping, the room temperature electrical conductivity rises rapidly from 0.03?S/cm in pristine sample to 133?S/cm in x?=?0.08 sample. Combined with the intrinsically low thermal conductivity, a maximum ZT value of 0.30 has been achieved at 823?K for Bi1.92Ge0.08O2Se, which is the highest ZT value for Bi2O2Se-based thermoelectric materials.  相似文献   

3.
Bi2O2Se oxyselenides, characterized with intrinsically low lattice thermal conductivity and large Seebeck coefficient, are potential n‐type thermoelectric material in the mediate temperature range. Given the low carrier concentration of ~1015 cm?3 at 300 K, the intrinsically low electrical conductivity actually hinders further enhancement of their thermoelectric performance. In this work, the isovalent Te‐substitution of Se plays an effective role in narrowing the band gap, which notably increases the carrier concentration to ~1018 cm?3 at 300 K and the electron conduction activation energy has been lowered significantly from 0.33 to 0.14 eV. As a consequence, the power factor has been improved from 104 μW·K?2·m?1 for pristine Bi2O2Se to 297 μW·K?2·m?1 for Bi2O2Se0.96Te0.04 at 823 K. Meanwhile, the suppressed lattice thermal conductivity derives from the introduced point defects by heavier Te atoms. The gradually decreased phonon mean free path reflects the increasingly intense phonon scattering. Ultimately, the ZT value attains 0.28 for Bi2O2Se0.96Te0.04 at 823 K, an enhancement by a factor of ~2 as compared to that of pristine Bi2O2Se. This study has demonstrated that Te‐substitution of Se could synergistically optimize the electrical and thermal properties thus effectively enhancing the thermoelectric performance of Bi2O2Se.  相似文献   

4.
The n‐type polycrystalline Bi2O2Se1?xClx (0≤x≤0.04) samples were fabricated through solid‐state reaction followed by spark plasma sintering. The carrier concentration was markedly increased to 1.38×1020 cm?3 by 1.5% Cl doping. The maximum electrical conductivity is 213.0 S/cm for x=0.015 at 823 K, which is much larger than 6.2 S/cm for pristine Bi2O2Se. Furthermore, the considerable enhancement of the electrical conductivity outweighs the moderate reduction of the Seebeck coefficient by Cl doping, thus contributing to a high power factor of 244.40 μ·WK?2·m?1 at 823 K. Coupled with the intrinsically suppressed thermal conductivity originating from the low velocity of sound and Young's modulus, a ZT of 0.23 at 823 K for Bi2O2Se0.985Cl0.015 was achieved, which is almost threefold the value attained in pristine Bi2O2Se. It reveals that Se‐site doping can be an effective strategy for improving the thermoelectric performance of the layered Bi2O2Se bulks.  相似文献   

5.
In the present work, the thermoelectric properties of S-doped Bi2O2-xSxSe at the temperatures from 320 to 793 K have been studied. The results show that the solubility limit of S is around x = 0.01 and S-doping is helpful to the sintering and grain growth of Bi2O2Se. Moreover, S-doping reduces the band gap of Bi2O2-xSxSe remarkably as x rises. As a result, a thousand times promotion of electrical conductivity at x = 0.02 is obtained, leading to a nearly 3 times increase of power factor at 787 K. By virtue of the intrinsically low thermal conductivity, a peak ZT of 0.29 at 793 K with an average of 0.21 has been achieved for Bi2O1.98S0.02Se, which is nearly 3 and 6 times larger than that of the pristine one. This study indicates that a small amount of S substitution for O could improve the thermoelectric properties of Bi2O2Se effectively.  相似文献   

6.
《Ceramics International》2023,49(3):4707-4712
Bi2Sr2Co2Oy is a thermoelectric material with low thermal conductivity. The Bi2Sr2Co2Oy/Si80Ge20 composite samples were prepared by solid phase sintering at high temperature to investigate the effects of Si80Ge20 alloys as the second phase on the microstructure and thermoelectric properties of the fabricated composites. An appropriate amount of the dispersed Si80Ge20 in the Bi2Sr2Co2Oy matrix can reduce the resistivity of the composite successfully. In particular, the increase in phonon scattering caused by the second phase leads to a significant decrease in thermal conductivity, which improves the thermoelectric properties of the material significantly. At 923 K, the thermal conductivity of the Bi2Sr2Co2Oy + 0.2 wt% Si80Ge20 sample achieves an ultralow value of 0.58 W/K·m. Its corresponding optimal dimensionless thermoelectric figure of merit value is 0.36, which is 56% higher than that of the pure Bi2Sr2Co2Oy sample.  相似文献   

7.
《Ceramics International》2023,49(7):10360-10364
Tin dioxide (SnO2) has recently proved to be a promising material for thermoelectric applications. We have investigated the influence of highly valence Bi doping as an electron donor in oxygenated SnO2 materials on their thermoelectric properties. We have synthesized the pure and Bi doped SnO2 nanoparticles (x = 0%, 5%, 10%, and 15%) through a simple hydrothermal approach. The Seebeck coefficient and Hall measurements have been used to determine thermoelectric behaviour. The measured value of the Seebeck coefficient increases from - 56 to - 83 μV/°C as the Bi content increases. This improvement in the Seebeck coefficient has been attributed to the charge carrier localization (energy filtering effect) caused by the inclusion of the bismuth atoms and the presence of secondary phases based on BiO2. However, the electrical conductivity measurements show an inverse relation with the Bi doping, increasing the impurities. The Sn1-xBixO2 sample with x = 15 has achieved the maximum Seebeck value, resulting in the upward trend in power factor of up to 1.97 × 10?4 Wm?1C?2. Further, we have used X-ray diffraction and scanning electron microscopy to determine the effect of Bi on the SnO2 crystal structure and surface morphology. Which also demonstrates the presence of composites with mixed phases.  相似文献   

8.
《Ceramics International》2017,43(7):5723-5727
The thermoelectric properties of Bi2Ba2Co2Oy and Bi1.975Na0.025Ba2Co2Oy+x wt% carbon nanotubes (CNT; x=0.00, 0.05, 0.10, 0.15, 0.5, and 1.0) ceramic samples synthesised by the solid-state reaction method were investigated from 300K to 950K. Na doping with a small amount played an important role in reducing resistivity and slightly reduced the Seebeck coefficients and the thermal conductivity. The CNT dispersant increased resistivity, but the thermal conductivity was reduced remarkably. In particular, the Bi1.975Na0.025Ba2Co2Oy+1.0wt% CNT sample exhibited an ultralow thermal conductivity of 0.39 W K−1 m−1 at 923K. This was attributed to the point defects caused by Na doping and the interface scattering caused by the CNT dispersant. The combination of Na doping and CNT dispersion had better effects on thermoelectric properties. The Bi1.975Na0.025Ba2Co2Oy+0.5wt% CNT sample exhibited a better dimensionless figure of merit (ZT) value of 0.2 at 923K, which was improved by 78.2%, compared with the undoped Bi2Ba2Co2Oy sample.  相似文献   

9.
SnSe-based materials have attracted widespread attention in thermoelectrics due to their outstanding thermoelectric performance. However, the pristine and unmodified polycrystalline SnSe reveals poor electrical properties. Doping and constructing nanostructured composite architectures to produce energy filtering effect proved to be an effective method to strengthen thermoelectric performance. In this study, Ti3C2/Sn0.98Cd0.02Se composites are successfully fabricated by the solvothermal method combined with the electrostatic self-assembly method and spark plasma sintering. The phase interface introduced by incorporating Ti3C2 into Sn0.98Cd0.02Se can effectively filter low-energy carriers due to its generation of energy barriers, thereby the Seebeck coefficient of x wt% Ti3C2/Sn0.98Cd0.02Se x = (0.05, 0.5, 1) samples is better than that of the pristine Sn0.98Cd0.02Se over the whole temperature range. Meanwhile, high conductivity was also obtained in 1 wt% Ti3C2/Sn0.98Cd0.02Se sample so that the high power factor of 3.31 μWcm−1K2 was acquired at 773 K. Ultimately, a peak ZT value of 0.41 was obtained at 773 K, compared with pristine Sn0.98Cd0.02Se, and the thermoelectric performance improved by 24%. This study offers an available approach to efficiently enhance the thermoelectric properties of polycrystalline SnSe-based materials.  相似文献   

10.
《Ceramics International》2020,46(15):24162-24172
This work reports the pulsed laser deposition of n-type selenium (Se) doped bismuth telluride (Bi2Te2.7Se0.3) and n-type bismuth telluride (Bi2Te3) nanostructures under varying substrate temperatures. The influence of the substrate temperature during deposition on the structural, morphological and thermoelectric properties for each phase was investigated. Density functional theory (DFT) simulations were employed to study the electronic structures of the unit-cells of the compounds as well as their corresponding partial and total densities of states. Surface and structural characterization results revealed highly crystalline nanostructures with abundant grain boundaries. Systematic comparative analysis to determine the effect of Se inclusion into the Bi2Te3 matrix on the thermoelectric properties is highlighted. The dependence of the thermoelectric figure of merit (ZT) of the nanostructures on the substrate temperatures during deposition was demonstrated. The remarkable room temperature thermoelectric power factor (PF) of 2765 μW/mK2 and 3179 μW/mK2 for pure and Se-doped Bi2Te3 compounds respectively, signifies their potential of being useful in cooling and power generation purposes. The room temperature ZT values of the Se-doped Bi2Te3 was found to be 0.92, about 30% enhancement as compared with the pure phase, which evidently results from the suppressed thermal conductivity in the doped species caused by phonon scattering at the interfaces.  相似文献   

11.
《Ceramics International》2016,42(16):17972-17977
MoS2 nanosheets with size of several-hundred nanometers were prepared by a hydrothermal intercalation/exfoliation method, then MoS2/Bi2Te3 composite nanopowders were prepared by a microwave-assisted wet chemical method using the MoS2 nanosheets, TeO2, Bi(NO3)3·5H2O, KOH and ethylene glycol as raw materials. Bulk MoS2/Bi2Te3 nanocomposites were prepared by hot pressing the MoS2/Bi2Te3 composite nanopowders with MoS2 nanosheet content ranging from 0 to 17 wt% at 80 MPa and 648 K in vacuum. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate that MoS2 and Bi2Te3 did not react each other during the hot pressing. FESEM observation reveals that the MoS2/Bi2Te3 composite samples had a more compact microstructure than the pristine Bi2Te3 bulk sample. The MoS2 phase was relatively randomly dispersed in the composite. At a given temperature, the electrical conductivity of the composites increases first then decreases as the MoS2 content increases, whereas the Seebeck coefficient of the bulk nanocomposites does not change much. A highest power factor, ~18.3 μW cm−1 K−2 which is about 30% higher than that of pristine Bi2Te3 sample, at 319 K has been achieved from a nanocomposite sample containing 6 wt% MoS2.  相似文献   

12.
Highly c‐axis oriented Bi2?xNaxSr2Co2Oy (x = 0, 0.1, 0.2, 0.3) thin films were successfully deposited onto LaAlO3 (0 0 1) single crystal substrates by the chemical solution deposition method. The Na‐doping effects on microstructures as well as transport and thermoelectric properties were investigated. The crystallite size normal to the thin film surface was decreased with Na doping, and the carrier concentration and mobility was enhanced and decreased, respectively. As for the transport properties, it is suggested that Na‐doping‐induced disorders play a more important role at low temperatures, while at the medium temperature the doping play a trivial role, at higher temperatures Na‐doping weakens the electron correlation. Combined with the transport properties and Seebeck coefficient results, it is suggested that the thermoelectric properties are mainly controlled by carrier concentration due to the hole doping in blocking layers. Power factor at 300 K was enhanced about 22% for the Bi1.7Na0.3Sr2Co2Oy thin film as compared with that of the undoped thin films, suggesting that Na doping at blocking layer in Bi2Sr2Co2Oy was an effective route to enhance the thermoelectric power factor.  相似文献   

13.
The solid solutions based on the pyrochlore-type system Bi2MgNb2-xTaxO9 were formed in the compositional range х = 0–2.0 (Bi1·6Mg0·8Nb1.6-tTatO7.2, t = 0–1.6). The Rietveld method was used to refine the structure for Bi2MgNb2-xTaxO9 (x = 0, 1.0, 2.0). The increasing tantalum content led to the slight decrease in the cubic unit cell parameters from 10.56934 (4) Å for x = 0 and 10.54607 (3) Å for x = 2 (sp.gr. Fd-3m:2). At the same time, tantalum additions suppressed grain growth in the pyrochlore ceramics during sintering and made it possible to obtain materials with an average grain size of 1–2 μm (Bi1·6Mg0·8Ta1·6O7.2). The increase in the Ta5+ concentration led to the decrease in the dielectric permeability from 104 (Bi1·6Mg0·8Nb1·6O7.2) to 20 (Bi1·6Mg0·8Ta1·6O7.2) at room temperature, while the dielectric loss tangent remained lower than 0.002, which is due to the small grain size and the high porosity of the samples. An increase in temperature has practically no effect on the values of the dielectric permittivity in the entire frequency range. The samples have weak through conductivity. The activation energies of electrical conductivity varied in the range of 0.84–1.00 eV, and the less tantalum, the lower the activation energy. The electrical properties of the samples at 200 Hz to 1 MHz are described by the simplest parallel scheme.  相似文献   

14.
《Ceramics International》2022,48(8):10852-10861
Carbon cloth was used as a flexible substrate for bismuth telluride (Bi2Te3) particles to provide flexibility and improve the overall thermoelectric performance. Bi2Te3 on carbon cloth (Bi2Te3/CC) was synthesized via a hydrothermal reaction with various reaction times. After over 12 h, the Bi2Te3 particles showed a clear hexagonal shape and were evenly adhered to the carbon cloth. Selenium (Se) atoms were doped into the Bi2Te3 structure to improve its thermoelectric performance. The electrical conductivity increased with increasing Se-dopant content until 40% Se was added. Moreover, the maximum power factor was 1300 μW/mK2 at 473 K for the 30% Se-doped sample. The carbon cloth substrate maintained its electrical resistivity and flexibility after 2000 bending cycles. A flexible thermoelectric generator (TEG) fabricated using the five pairs of 30% Se-doped sample showed an open-circuit voltage of 17.4 mV and maximum power output of 850 nW at temperature difference ΔT = 30 K. This work offers a promising approach for providing flexibility and improving the thermoelectric performance of inorganic thermoelectric materials for wearable device applications using flexible carbon cloth substrate for low temperature range application.  相似文献   

15.
《Ceramics International》2023,49(3):4305-4312
Bismuth telluride is a widely used commercial thermoelectric material with excellent thermoelectric performances near room temperature. Reducing thermal conductivity is one of the most effective ways to improve performances of thermoelectric materials. In this study, the thermal conductivity of the material was reduced by fabricating porous structures. Highly dense NaCl-(Bi,Sb)2Te3 composites were fabricated by a high-pressure technology. The NaCl phase was then removed from the composites by ultrasonic washing to produce porous structures. The produced (Bi,Sb)2Te3 porous materials possessed excellent thermoelectric properties. The porosity and pore size of the (Bi,Sb)2Te3 porous materials increased with the increasing NaCl content, decreasing the thermal conductivity significantly. An ultra-low lattice thermal conductivity of 0.21 Wm?1K?1 at 493 K was achieved when the porosity was 39%, almost the lowest lattice thermal conductivity reported for (Bi,Sb)2Te3 bulk materials. The figure of merit ZT value was enhanced to 1.05 at 493 K when the porosity was 25%. Compared with the most compacted samples (ZT = 0.79 and porosity of 10%) prepared under the same conditions, the ZT value of the porous samples increased by 33%. This study indicated that porous thermoelectric materials can be prepared simply, quickly and efficiently by high-pressure/ultrasonication washing to improve thermoelectric performances, which has evident reference values for preparing other thermoelectric pore materials with enhancing behaviors.  相似文献   

16.
The thermoelectric properties of bulk polycrystalline Sr0.5Ba0.5Nb2O6 (SBN50) fabricated via solution combustion synthesis (SCS) and reduced at temperatures of 900°C–1150°C were explored. The Seebeck coefficient (S) of all samples increased over the entire range of testing temperatures; a peak S value of ?281 μV/K was obtained at 930 K for the sample reduced at 900°C. A metal‐insulator transition was observed in the electrical conductivity (σ) of samples reduced at 1000°C–1150°C, whereas only semiconducting electrical behavior was observed for the sample reduced at 900°C. An optimal balance between S and σ was achieved for the pellet reduced at 1000°C, which exhibited a maximum power factor of 1.78 μW/cm·K2 at 930 K. Over a temperature range of 300–930 K, the thermal conductivity (κ) of as‐processed and reduced (1000°C) SBN50 was found to be 1.03–1.4 and 1.46–1.84 W/m·K, respectively. A maximum figure of merit (ZT) of 0.09 was obtained at 930 K for the 1000°C‐reduced sample. X‐ray photoelectron spectroscopy revealed that the Nb2+ peak intensity increased at higher reduction temperatures, which could possibly lead to a distortion of NbO6 octahedra and a decrease in the Seebeck coefficient.  相似文献   

17.
《Ceramics International》2021,47(18):25255-25263
Flexible photodetectors have attracted great attention in fields such as display screens, aerospace, and civil engineering due to their wearable and large-area foldable advantages. Therefore, the hybrid structure of Bismuth oxyselenide(Bi2O2Se)/Graphene was successfully synthesized in this work through mechanical compound method. In addition, we constructed a photodetector based on solid-state electrolyte, which has the advantage of small size, light weight, and portability. Photoelectrochemical tests show that the Bi2O2Se/graphene photodetector based on solid-state electrolyte has excellent photoresponse characteristics under 0 V, and its photocurrent density is 400 nA/cm2 when the optical power is 120 mW/cm2. In addition, the Bi2O2Se/graphene photodetector exhibits superb flexibility. After different bending angles and bending times, the photocurrent slightly decreases, which may be due to small cracks in the bending process. Finally, the tested Bi2O2Se/graphene solid-state photodetector showed excellent stability. The photocurrent was only slightly reduced after 1000 s, which was 81% of the original value. The result shows that the hybrid structure of Bi2O2Se/Graphene has potential in the field of photodetectors with exceptional performance, excellent stability and mechanical properties.  相似文献   

18.
This study demonstrates atomic layer deposition (ALD) of an extremely thin Al2O3 layer over n-type Bi2Te2.7Se0.3 to alleviate the adverse effects of multiple boundaries on their thermoelectric performance. Multiple boundaries reduce thermal conductivity (κ), but generate electrons, deviating from the optimum carrier concentration. Only one Al2O3 ALD cycle effectively suppresses Te volatilization at the grain boundaries, resulting in a decrease from 5.8 × 1019/cm3 to 3.6 × 1019/cm3 in the electron concentration. Concurrently, the one-cycle-Al2O3 coating produces fine grains, thus inducing numerous boundaries, ultimately suppressing the lattice κ from 0.64 to 0.33 W/m·K. A further increase in the number of Al2O3 cycles leads in a significant rise in the resistance, resulting in degradation of thermoelectric performance. Consequently, the ZT value is increased by 51 % as a result of Al2O3 coating with a single ALD cycle. Our approach offers new insights into the simultaneous reduction of the κ and electron concentration in n-type Bi2Te3-based materials.  相似文献   

19.
《Ceramics International》2021,47(22):31168-31179
Cubic, tetragonal, and monoclinic (Bi2O3)x (Nd2O3)y (WO3)z (x + y + z = 1) solid solutions based on the Bi2O3 oxygen ion conductor have been prepared by solid-state reactions in the ternary system Bi2O3–Nd2O3–WO3. The field of monoclinic compounds with a Bi3·24La2W0·76O10.14-type structure has been shown to account for most of the ternary system. Compounds with a cubic fluorite structure exist at the boundary of the monoclinic phase field in two small regions at high (83–91 mol% Bi2O3, δ-phase) and low (20–55 mol% Bi2O3, δ′-phase) Bi concentrations. The cubic samples of the δ-phase retain their structure only during rapid heating and cooling, but annealing in the range of 300–700 °C results in structure degradation to lower symmetry phases. The monoclinic compounds and Bi-poor cubic compounds (δ′-phase) have good thermal stability. The cubic samples of the δ′-phase are hygroscopic. Their bulk conductivity noticeably increases with atmospheric humidity, suggesting that these materials are potential proton conductors.  相似文献   

20.
《Ceramics International》2022,48(4):4584-4594
The development of single phase photocatalyst is expected to realize clean energy and pollution treatment. Herein, we reported a novel Tremella-like Bi2WO6 catalyst which was obtained by facile hydrothermal technique. The formation of Tremella-like Bi2WO6 strongly depended on introduction of Bi2O3. Based on the Kirkendall effect, Bi2O3 induced Bi(NO3)3·5H2O to form biscuit-like Bi6O6(OH)3(NO3)3·3H2O particles which provided templates and reacted simultaneously with WO42? to synthesize Tremella-like Bi2WO6. The Tremella-like Bi2WO6 exhibited remarkable visible-light catalytic performance. The degradation rate of RhB dye reached 100% with 10 min, the reduction rate of CO2 was 5.5 times higher than pure Bi2WO6. Moreover, the Tremella-like Bi2WO6 catalyst displayed excellent stability during the recycle experiments. The high catalytic activity makes single phase Bi2WO6 catalyst great potential in environmental protection field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号