首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of regular shaped Pb(Zn1/3Nb2/3)O3‐based ternary ferroelectric single crystals (1 ? x)Pb(In1/2Nb1/2)O3–0.33Pb(Zn1/3Nb2/3)O3xPbTiO3 (PIN–PZN–PT) have been grown by means of the top‐seeded solution growth method that prevented pyrochlore phase and promoted [001] or [111] growth. The nucleation and crystallization behavior of the Pb(Zn1/3Nb2/3)O3‐based ferroelectric single crystals differed from other relaxor‐based ferroelectric single crystals was discovered. Di‐/piezo‐/ferro‐/pyroelectric properties were characterized systematically. The PIN–PZN–PT single crystals showed large coercive fields Ec, high Curie temperature TC and high pyroelectric coefficient P, presenting similar performance but better thermal stability compared with the PZN–PT single crystals, and making it a promising material for transducers and IR detectors in a wider temperature range.  相似文献   

2.
To explore new relaxor‐PbTiO3 systems for high‐power and high‐temperature electromechanical applications, a ternary ferroelectric ceramic system of Pb(Lu1/2Nb1/2)O3–Pb(In1/2Nb1/2)O3–PbTiO3 (PLN–PIN–PT) have been investigated. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the as‐prepared PLN–PIN–PT ceramics near the morphotropic phase boundary (MPB) were characterized. A high rhombohedral‐tetragonal phase transition temperature TR‐T of 165°C and a high Curie temperature TC of 345°C, together with a good piezoelectric coefficient d33 of 420 pC/N, were obtained in 0.38PLN–0.20PIN–0.42PT ceramics. Furthermore, for (0.8?x)PLN–0.2PIN–xPT ceramics, the temperature‐dependent piezoelectric coefficients, coercive fields and electric‐field‐induced strains were further studied. At 175°C, their coercive fields were found to be above 9.5 kV/cm, which is higher than that of PMN–PT and soft P5H ceramics at room temperature, indicating PLN–PIN–PT ceramics to be one of the promising candidates in piezoelectric applications under high‐driven fields. The results presented here could benefit the development of relaxor‐PbTiO3 with enhanced phase transition temperatures and coercive fields.  相似文献   

3.
The structural evolution and properties of 0.3Pb(In1/2Nb1/2)O3–0.38Pb(Mg1/3Nb2/3)O3–0.32PbTiO3 (0.3PIN‐0.38PMN‐0.32PT) ferroelectric ceramics with different sintering times have been investigated. The content of the tetragonal phase is increased in samples sintered for more than 6 h, despite that the composition falls in the rhombohedral region of the previously established phase diagram. The results show that the metastable tetragonal phase at room temperature is induced and stabilized by the tensile residual stresses. Excessively long sintering time generally leads to grain coarsening, loss of lead, and deterioration of properties, while the increasing amount of the tetragonal phase, and the large residual tensile stress appear to improve the dielectric and electromechanical properties. This study offers new insights into the sintering of Pb‐based ferroelectric ceramics with complex compositions.  相似文献   

4.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

5.
For rhombohedral (R) Pb(In1/2Nb1/2)O3–PbZrO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PZ–PMN–PT) relaxor single crystal, high temperature‐insensitive behaviors under different external stimuli were observed (remnant polarization Pr from 30°C to 180°C and piezoelectric strain d33* from 30°C to 116°C). When electric field E ≥ 50 kV/cm in the case of an activation field Ea = 40‐50 kV/cm was applied, it was found that the domain switching was accompanied by a phase transition. The high relaxor nature of the R phase PIN–PZ–PMN–PT was speculated to account for the large Ea and high piezoelectric response. The short‐range correlation lengths extracted from the out‐of‐plane (OP) and in‐plane (IP) nanodomain images, were 64 nm and 89 nm, respectively, which proved the high relaxor nature due to In3+ and Zr4+ ions entering the B‐site in the ABO3‐lattice and enhancing the disorder of B‐site cations in the R phase PIN–PZ–PMN–PT. The switching process of R nanodomain variants under the step‐increased tip DC voltage was visually revealed. Moreover, the time‐dependent domain evolution confirmed the high relaxor nature of the R phase PIN–PZ–PMN–PT single crystal.  相似文献   

6.
Transparent 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN‐PT) based ceramics were prepared by a conventional solid‐state synthesis without using a hot‐press method. The ceramics became transparent when they were sintered in an O2 atmosphere. The optical transmission increased with decreasing diameter of the calcined powder, which was controlled by the size of zirconia ball‐milling media. Substitution of 3 mol% La for Pb in PMN‐PT further increased the optical transmission to 68% at the wavelength of 2000 nm, which was comparable to that of hot‐pressed Pb(Mg1/3Nb2/3)O3‐PbTiO3 based transparent ceramics.  相似文献   

7.
By adopting Nb2O5, HNO3 and coordination agents EDTA as raw materials, pyrochlore‐free 0.64Pb(Ni1/3Nb2/3)O3–0.36PbTiO3(0.64PNN–0.36PT) powders were successfully synthesized via a combustion route. Free of pyrochlore phase was realized by the chelation formation of EDTA‐metal ions which isolate niobium and lead oxides and then prevent the formation of pyrochlore phases, therein generate the desired perovskite phases. Comparing the results with similar samples synthesized by the Columbite method, the new 0.64PNN–0.36PT ceramics here shown much better dielectric and ferroelectric performances: a maximum dielectric constant of 22 856 at 1 kHz and a remnant polarization of 21.6 μC/cm2 at 40 kV/cm.  相似文献   

8.
Pb(Mg1/3Nb2/3)O3–PbTiO3 is used as a model system of perovskite solid solutions with very high piezoelectric response at tailored morphotropic phase boundaries to demonstrate the processing of textured ceramics by ceramic‐only technology. A novel homogeneous templated grain growth approach that uses conventional ceramic procedures and a single‐source nanocrystalline powder for the matrix and also for obtaining the templates is described. Two batches of (100) faceted cube‐shaped microcrystals with average sizes of 27 and 10 μm were successfully used as templates, and aligned by tape casting for the processing of <001>‐textured Pb(Mg1/3Nb2/3)O3–PbTiO3 piezoelectric ceramics. Materials with effective piezoelectric coefficients up to 1000 pC/N and ferroelectric properties approaching those of single crystals are obtained.  相似文献   

9.
0.83 Pb(Zr1/2Ti1/2)O3-0.11Pb(Zn1/3Nb2/3)O3-0.06Pb(Ni1/3Nb2/3)O3 (PZNNT) samples with plate-like PbTiO3 (PT) template were prepared using tape casting technology. The microstructure evolution and reaction mechanism between the matrix and PT template was investigated systematically. The quench heat treatment experiment was designed and the microstructure was evaluated. The results showed that the plate-like PT template has relatively low thermal stability which would decompose to form Pb-rich liquid phase and Ti-rich region at the sintering temperature of 900 °C–1050 °C. Plate-like PT template reacted with the PZNNT matrix materials during the sintering process, which did not contribute to the grain growth orientation for PZNNT matrix. Finally, the mechanism of grain growth for the PZNNT ceramics with plate-like PT template is clarified. This work demonstrated that the thermal stability of plate-like template is one of the key factors for fabricating textured piezoelectric ceramics.  相似文献   

10.
Lead magnesium niobate titanate is an important ferroelectric material. In this study, the terahertz (THz) transmission properties of a 0.73Pb(Mg1/3Nb2/3)O3–0.27PbTiO3 single crystal were investigated using a time‐domain spectroscopy method. Complex refractive index and dielectric dispersion functions were determined from the amplitude and phase information derived from time‐domain responses. Based on calculations, it was concluded that the room‐temperature dielectric constant of the single crystal equal to ~30 at 1 THz. This result could be a useful reference for development of ferroelectric‐material‐based THz components and devices.  相似文献   

11.
We reported the dielectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal in the temperature range of 300–1073 K and the frequency range of 100 Hz–10 MHz. Our results showed the coexistence of both true‐ and pseudo‐relaxor behaviors in the crystal. The true relaxor behavior related to the paraelectric‐ferroelectric phase transition occurs at~423 K. The pseudo‐relaxor behavior appearing at~773 K was found to be related to oxygen vacancies. Further investigation reveals that the pseudo‐relaxor behavior has fine structure: it contains two oxygen‐vacancy‐related relaxation processes. The low‐temperature relaxation process is a dipolar relaxation created by the hopping motions of the oxygen vacancies, and the high‐temperature relaxation process is a Maxwell‐Wagner relaxation caused by the sample/electrode contacts.  相似文献   

12.
A xPb(Zn1/3Nb2/3)O3–(1–x)Pb(Zr0.95Ti0.05)O3 (xPZN–(1–x) PZT) system close to antiferroelectric–ferroelectric (AFE–FE) morphotropic phase boundary has been prepared and investigated. The XRD results reveal PZN addition induces a phase transition from the orthorhombic (AFE) to rhombohedral (FE) phase through a phase coexistence region (AFE+FE). The polarization–electric field (P–E) measurements indicate that the AFE phase can be induced into a metastable FE (FEm) phase. And the FEm can recover to AFE around a critical temperature indicated by temperature‐dependent P–E loops. A composition‐temperature phase diagram was generalized within a certain range of PZN content in which an AFE–FE phase boundary connecting orthorhombic antiferroelectric to rhombohedral ferroelectric phase zones is formed near room temperature.  相似文献   

13.
A systematic investigation of the seeding effects on the mechanochemical synthesis of lead magnesium niobate – lead titanate 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (PMN–10PT), one of the most studied relaxor-ferroelectric material for electrocaloric applications, is reported. The perovskite crystallisation process was followed by X-ray diffraction using the Rietveld refinement method and transmission electron microscopy. Compared to the mixed-oxides case which requires 143 h of high-energy milling, the milling time needed to obtain a phase-pure PMN–10PT perovskite using PT seeds is reduced almost twice. The presence of PT seeds leads to faster transitions from the amorphous to pyrochlore and to perovskite phases compared to the mixed-oxides case. A sintering study demonstrates, for the first time, that a second, metastable, pyrochlore phase is taking part in the processes of perovskite formation. The PMN–10PT ceramic prepared from the PT-seeded powder exhibits electrocaloric properties comparable to reported values for PMN–10 PT prepared from oxides.  相似文献   

14.
The anisotropic domain structures and local piezoresponse of rhombohedral Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 single crystals with high ferroelectric phase transition temperature (TFE‐FE≥120°C) were systematically investigated by vector piezoresponse force microscopy. The typical size of labyrinthine domain pattern for [001]C sample was in the range of 100‐200 nm, revealing its relaxor feature. While the [011]C sample exhibited ordered ribbon‐shaped domain pattern with preferential alignment along <011> direction since the modulation effect of polar nanoregions. For [111]C sample, it had messy and featureless domain patterns. For as‐grown crystal, the incorporation of Zr4+ cation in Pb(Mg1/3Nb2/3)O3–PbTiO3 system resulted in that the long‐range coulomb interactions of the charged ions in the short range order regions were weakened, leading to an increased relaxor feature. Concurrently, the incorporation of Zr4+ cation enhanced the Pb‐B repulsion intensity, resulting in an improved TFE‐FE. Temperature‐dependent properties of as‐grown crystal exhibited good temperature stability from 30 to 120°C, indicating it is a promising material for actuator and ultrasonic transducer applications.  相似文献   

15.
《Ceramics International》2023,49(19):31582-31590
Piezoelectric ceramics with high strain response and low hysteresis are highly in demand for high-performance actuator applications. Unfortunately, the trade-off relationship between large field-induced strain and low hysteresis in piezoelectric ceramics is a key challenge for designing high-performance piezoelectric actuators. Herein, ymol%La-doped 0.10 Pb(In1/2Nb1/2)O3-xPbZrO3-(0.90x)PbTiO3 [0.10PIN-xPZ-(0.90-x)PT: ymol%La] ternary relaxor ferroelectric ceramics were prepared by conventional solid-state reaction technique. Pb(In1/2Nb1/2)O3 (PIN) as a relaxor end member was introduced into (Pb,La) (Zr,Ti)O3 (PLZT) system to improve relaxor characteristics and strain properties. A giant strain of 0.23% was obtained in 0.10PIN-0.59PZ-0.31 PT: 8mol%La ceramic at the electric field of 20 kV/cm, with a high piezoelectric d33* of 1150 pm/V and low hysteresis Hy of 6.4%, exhibiting a potential application in high-performance piezoelectric actuators. Furthermore, the effects of La ion doping and components on the ferroelectric, dielectric and electric field-induced strain properties were investigated, and provides a new way for improve the strain properties of piezoelectric materials.  相似文献   

16.
High radiation tolerance of functional materials in harsh environments is the key requirement for the operation of particle accelerators, medical devices, nuclear power plants, satellites, and spacecraft. Neutron and gamma (γ) radiation can seriously affect the functional properties of the irradiated materials and thus the performance of the entire device. In this work, the feasibility of using (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–100xPT) electrocaloric materials in applications where the material is exposed to high neutron and γ-radiation is investigated. For this purpose, three different compositions of PMN–100xPT ceramics (x = 0, 0.1, and 0.35) were prepared and their dielectric, ferroelectric and electrocaloric properties were investigated before and after neutron and γ-irradiation. The samples were irradiated with a neutron fluence of 1015 to 1017 neutrons cm?2 with an energy of 1 MeV, which exceeds the largest expected neutron irradiation in the European Council for nuclear Research (CERN) and simultaneously exposed to γ-irradiation. The neutron and γ-radiation partially affect the functional properties of the PMN–35PT, the ceramic with distinct ferroelectric and weakened relaxor features, with some differences observed in the domain switching behavior, measured by conventional polarization versus electric field (PE) hysteresis, at the highest radiation dose of 1017 neutrons cm?2. In contrast, the functional properties of the irradiated PMN and PMN–10PT samples with relaxor behavior are quite similar to those of the pristine samples, therefore, we conclude that these materials can be used as working materials in EC coolers exposed to such harsh environments.  相似文献   

17.
High-performance relaxor-PbTiO3 ferroelectric crystals have been widely applied in transduces, sensors and so on. The ferroelectric phase transition temperature restricts their application in automobile, deep oil-well detection and aerospace which requires high thermal stability. Decreasing the effects of ferroelectric phase transition is a promising strategy for improving the thermal stability. Here, the design strategy is structural regulation via rare earth doping tetragonal Pb(In1/2Nb1/2)O3–PbTiO3 (PIN-PT) crystals. The d33, k33 and TC of [001]c-oriented Nd-PIN-PT crystals are 750 pC/N, 87%, 250 °C. Compared with the d33 of tetragonal 0.61PIN-0.39 PT crystals (540 pC/N) and tetragonal 0.35PIN-0.26 Pb(Mg1/3Nb2/3)O3 (PMN)-0.39 PT crystals (530 pC/N), the d33 of Nd-PINT crystals enhance by 39% and 41%. In addition, Nd-PIN-PT crystals have Qm of 110, which is larger than rhombohedral relaxor-PbTiO3 ferroelectric crystals (~50). Although the d33 of Nd-PIN-PT crystals is lower than that of rhombohedral relaxor-PT ferroelectric crystals, the d33 and k33 are stable up to 250 °C, which is higher than tetragonal PIN-PMN-PT crystals (210 °C). The high thermal stability of piezoelectric properties is related to the high thermal stability of domain after poling. This work provides a design strategy for high thermal stability ferroelectric crystals.  相似文献   

18.
Broadband dielectric spectroscopy results of various ordered and disordered (1 ? x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.2) the most probable relaxation frequency decreases on cooling according to Vogel–Fulcher law.  相似文献   

19.
We have investigated the processing of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN–PT) thick films on platinised alumina substrates. Nanosized PMN–PT powder with 2 mol% of excess PbO was prepared by high-energy milling and deposited on the substrate using screen-printing technology. The films were then sintered at 950 °C in a PbO-rich atmosphere. The influence of the sintering time and the amount of PbO-containing packing powder was studied and related to the structural, microstructural, dielectric and piezoelectric properties of the film. In order to obtain a homogeneous and dense thick film without any secondary phase, the PMN–PT films had to be sintered in the presence of a PbO-based liquid phase that had to be completely removed from the thick film during the final stage of the sintering. Under optimal sintering conditions we obtained a room temperature relative dielectric permittivity of 3600, dielectric losses of 0.036, a Tm of 174 °C, a permittivity at the Tm of 21,000 and a d33 of 140 pC/N.  相似文献   

20.
In this study, ternary ferroelectric 0.06Pb(Mn1/3Nb2/3)O3–0.94Pb(Zr0.48Ti0.52)O3 (PMN–PZT) thin film with high piezoelectric coefficient were grown on La0.6Sr0.4CoO3-buffered Pt/Ti/SiO2/Si substrate by RF magnetron sputtering method. The phase and domain structure along with the macroscopic electrical properties were obtained. Under the optimized temperature of 550°C and sputtering pressure 0.9 Pa, the PMN–PZT film owned large remnant ferroelectric polarization of 62 μC/cm2. In addition, the PMN–PZT film had polydomain structures with fingerprint-type nanosized domain patterns and typical local piezoelectric response. Through piezoelectric force microscopy, the PMN–PZT thin film at nanoscale exhibited obvious domain reversal when subjected to in situ poling field. It was further found that the quasi-static piezoelectric coefficient of the PMN–PZT thin film reached 267 pC/N, which was about twice to that of the commercial PbZrO3–PbTiO3 (PZT) thin film. The optimized relaxor ferroelectric thin film PMN–PZT on silicon with global electrical properties shows great potential in the piezoelectric micro-electro-mechanical systems applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号