首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of energy storage properties on grain size was investigated in BaTiO3‐based ferroelectric ceramics. Modified BaTiO3 ceramics with different grain size were fabricated by two‐step sintering method from BaTiO3 powders doped with Al2O3 and SiO2 by aqueous chemical coating. For samples doped with ZnO sintering aid in addition to Al2O3‐SiO2, the density and breakdown strength increased significantly. In general, samples with smaller grains have lower polarization but higher energy storage efficiency. Al2O3‐SiO2‐ZnO‐doped samples with average grain size of 118±2 nm have an energy density of 0.83±0.04 J/cm3. Obvious segregation of doping elements in second phase and grain boundary was observed by TEM‐EDS. Impedance spectroscopy further explains the relationship between microstructure and properties. Compared to common energy storage ceramics, the grain size of this low‐cost ceramics sintered at relatively low temperature is small, and the pilot scale production has been well completed. All these features make the utilization in multilayer devices and industrial mass production possible. In addition, the obtained rules are helpful in further development of energy storage ceramics.  相似文献   

2.
0.73ZrTi2O6–0.27MgNb2O6 ceramics with various Al2O3 contents (0‐2.0 wt%) were prepared by conventional ceramic route. The effects of Al2O3 on the phase composition, microstructure, conductivity, and microwave dielectric properties were systematically investigated. The coexistence of a disordered α–PbO2‐type phase and a rutile second phase was found in all compact ceramics with low Al2O3 contents (= 0, 0.5, and 1.0 wt%), while a corundum phase was detected when Al2O3 additive increased to 1.5 and 2.0 wt% based on X‐ray diffraction results. With the addition of Al2O3, the decreased grain size of the matrix phase was observed using field‐emission scanning electron microscope, accompanied with increased resistivity and band‐gap energy. Additionally, Al2O3 additives efficiently improved the quality factor of the ceramics. After sintering at 1360°C for 3 hours, the ceramic with 1.0 wt% Al2O3 exhibited excellent microwave dielectric properties: a dielectric constant of 43.8, a quality factor of 33 900 GHz (at 6.6 GHz), and a near‐zero temperature coefficient of resonant frequency (3.1 ppm/°C).  相似文献   

3.
Porous Al2O3-based ceramics with improved mechanical strength and different pore size were fabricated using Al2O3 and SiO2 poly-hollow microspheres (PHMs) as raw materials by selective laser sintering (SLS). The effects of different contents of SiO2 PHMs on phase compositions, microstructures, mechanical properties and pore size distribution of the prepared ceramics were investigated. It is found that moderate content of SiO2 PHMs (≤30 wt%) could work as a sintering additive, which could enhance the bonding necks between Al2O3 PHMs. When the content of SiO2 PHMs increased from 0 wt% to 30 wt%, the compressive strength of Al2O3-based ceramics increased from 0.3 MPa to 4.0 MPa, and the porosity decreased from 77.0% to 65.0% with open pore size decreased from 52.0 μm to 38.3 μm. However, SiO2 PHMs could provide pores by keeping its integrity when the content of SiO2 PHMs increased to 40 wt%, which could result in the porosity increasing to 66.8% and pore size decreasing to 30.1 μm. Selective laser sintering of different kinds of ceramic PHMs is a feasible method to fabricate porous ceramics with complex shape, controllable pore size and improved properties.  相似文献   

4.
Chemical coating, an effective doping modification method, was employed to fabricate fine‐grain BaTiO3‐based ceramics. Based on the consideration of subsequently using base metal as inner electrodes in multilayer ceramic devices, green bodies are generally sintered in reducing atmosphere, which generates more charged point defects and thus affects the electric properties. According to the elements distribution analysis, Al element is greatly enriched in the grain boundary and shell region. Coating Al2O3 achieves not only a smaller grain size and narrower distribution but also a higher breakdown strength, discharge energy density and energy efficiency at ambient temperature. In addition, temperature dependences of dielectric and energy storage properties under a same field were also investigated. Over the whole measuring temperature range, the sample with Al2O3 remains higher discharge energy density and energy efficiency.  相似文献   

5.
《Ceramics International》2020,46(14):22738-22744
(1-x) K0.5Na0.5NbO3 ~ xAl2O3 (x = 0, 0.2, 0.4, 0.6) ceramics were prepared via a traditional solid-state reaction method. The phase structure, micro-morphology, dielectric properties and electromagnetic properties of ceramic samples were studied and analyzed. Results indicate that all the samples are similar to K0.5Na0.5NbO3 (KNN) in perovskite structure. With the increase of Al2O3 content, the X-ray diffraction peaks move to a large angle region, suggesting the substitution of niobium ions by aluminium ions and the distortion of the KNN lattice with a new phase arising. With the increase of Al2O3 content the grain size reduces and the dielectric constant decrease, yielding to the decrease of the electromagnetic shielding performance of ceramic. When the x is 0.4, the minimum value of reflectivity of sample is −28 dB at the frequency of 11.6 GHz. It can be concluded that both the grain size and Al2O3 content can obviously affect the electromagnetic properties of ceramics, which can be easily turned through a multi-layer SiO2 heterojunction structure.  相似文献   

6.
《Ceramics International》2016,42(13):14627-14634
To improve multilayer ceramic capacitors (MLCCs), thinner dielectric layers are necessary. To achieve this goal, both grain size and uniformity of the MLCC particles must be controlled effectively. In this study, the core-shell structure of submicron-sized multi-function ceramic capacitors powder was synthesized using a novel precipitation route, which controls both dispersion and particle size of BaZr0.1Ti0.9O3 and BaZr0.1Ti0.9O3@Al2O3 particles. In this paper, we investigate the effect of Al2O3 coating on the microstructure and the dielectric properties of BaZr0.1Ti0.9O3. We found that both average grain size and maximum dielectric constant (εmax) of the ceramics decrease with increasing concentration of Al2O3. Our results demonstrate that fine-grained ceramic materials can meet the specifications of the Electronic Industries Alliance Y5V with a concentration of Al2O3-coated of 0.25 mol percent, a permittivity of 3393 at room temperature, and an average particle size of about 400 nm.  相似文献   

7.
The BaTiO3/BaTiO3@SiO2 (BT/BTS) ceramics with layered structure, where grain size was about 1–2 μm in the BT layer while it was about 300–400 nm in the BTS layer, were fabricated by the tape-casting and lamination method. With the increasing of SiO2 content in the BTS layer, the dielectric constant decreased gradually, and the breakdown strength was remarkably improved. Compared to the SiO2-added BaTiO3 bulk ceramics, the layered ceramics displayed significant enhancements in dielectric properties, breakdown properties and energy storage properties. The enhancement in dielectric properties was mostly attributed to the diluting effects created by this structure to SiO2. Based on the finite element analysis with the dielectric breakdown mode, it was regarded that the electric field redistribution and the interface blocking effect led to the enhancement of breakdown strength. Finally, the maximum energy density of 1.8 J/cm3 was obtained at a breakdown strength of 301.4 kV/cm for the BT/BTS3 ceramic.  相似文献   

8.
Pure phase of Ba0.94Bi0.04(Fe0.5Nb0.5)O3 (BBFN) nano-particles were obtained by chemical co-precipitation method. The core-shell structure of BBFN@SiO2 and BBFN@SiO2/Al2O3 particles and the target ceramics were successfully prepared by aqueous chemical coating approach. The microstructures and dielectric properties of BBFN@SiO2 and BBFN@SiO2/Al2O3 were studied. Both the BBFN@SiO2 and BBFN@SiO2/Al2O3 samples show significantly decreased dielectric loss and good frequency and temperature stability on relative permittivity. Compared to the rapid decline of relative permittivity of BBFN@SiO2, the synergistic effect of SiO2 and Al2O3 in BBFN@SiO2/Al2O3 ceramics made the relative permittivity of which remains a relatively high level with very low dielectric loss, making it more suitable in colossal permittivity applications. Based on the impedance analysis, the grain boundary effect and IBLC models play the important role for the improvement of dielectric properties of BBFN@SiO2/Al2O3 samples.  相似文献   

9.
Microwave dielectric ceramics with the composition of Li2ZnTi3O8 – 4 wt% TiO2 were synthesized by the conventional solid‐state reaction. 4 wt% TiO2 powders with different particles size were added to the Li2ZnTi3O8 ceramic. Then the ceramic samples were sintered at temperatures 1075°C, 1050°C, 1000°C, and 950°C for 4 h. The effect of the particles size of TiO2 additive on the microwave dielectric properties of the ceramics has been investigated. In the study two categories of particles size of TiO2 additive have been used; (i) Nanoparticle (50 nm), (ii) Micron sized (40, 5, 1 μm) powder. X‐ray showed that the TiO2 additive has not solved in the LZT structure and has not almost undergone chemical reaction with the LZT ceramic. The results showed that the addition of TiO2 nanoparticles to the LZT ceramics significantly improved the density and a dense and uniform microstructure and also abnormal grain growth were observed by SEM. The use of TiO2 nanoparticle reduces porosity and leads to an increase in green density. The maximum density was found to be 98.5% of the theoretical density and the best relative permittivity of 28, quality factor of 68000 GHz and τf value of ?2 ppm/°C were obtained for the samples added with 4 wt% of the TiO2 nanoparticles, sintered at 1050°C for 4 h.  相似文献   

10.
Guangyu Dong  W. Li 《Ceramics International》2021,47(14):19955-19958
The sintering behavior, microstructure and microwave dielectric properties of Al2O3 ceramics co-doped with 3000ppmCuO2+6000ppmTiO2+500ppmMgO (Cu/Ti/Mg) have been investigated. The results show that 1 wt% Cu/Ti/Mg can reduce the sintering temperature of Al2O3 ceramics effectively. Samples with relative densities of ≥97% and uniform microstructure can be obtained when sintered at 1150 °C. Higher temperature can further increase the density of the sample, but it inevitably leads to abnormal grain growth. Meanwhile, the investigation results show that the low-firing Al2O3 ceramics have good microwave dielectric properties especially high Q × f value. A high Q × f value of 109616 GHz is able to be obtained for the 1150 °C sintered sample. The reason for the low temperature densification, abnormal grain growth behavior and the changing trend of the microwave dielectric properties are discussed in the paper.  相似文献   

11.
Si3N4 ceramics with different BaTiO3 contents have been fabricated by pressureless sintering in a N2 atmosphere at 1680°C for 2 h. Al2O3 and Nd2O3 were used as sintering additives to promote the densification of Si3N4 ceramics. The effect of BaTiO3 addition on the densification, mechanical properties, phase compositions, microstructure, and dielectric properties of Si3N4 ceramics was investigated. The relative density and flexural strength of Si3N4 ceramics increased with the addition of BaTiO3 up to 15 wt% and then decreased, while the dielectric constant increased continuously as the BaTiO3 contents increased. The dielectric constant of Si3N4 ceramics can be tailored in the range from 8.42 to 12.96 by the addition of 5 wt%‐20 wt% BaTiO3. Meanwhile, these Si3N4 ceramics all had flexural strength higher than 500 MPa.  相似文献   

12.
[0001] textured alumina ceramics with a fine grain size were fabricated between 1400°C and 1600°C via templated grain growth (TGG) using fine alumina platelets (~0.6 and ~3 μm diameter) aligned by tape casting in either a 50 nm α‐Al2O3 matrix powder, or in a seeded boehmite sol. The 3 μm templates could be readily aligned by tape casting in both matrices (orientation parameters r = 0.27 and 0.18, respectively), whereas 0.6 μm diameter templates were well aligned in the seeded boehmite sol only (r = 0.29). Improved alignment in boehmite sols is attributed to inorganic gelation, resulting in a strongly pseudo‐plastic rheology that preserves template alignment against the influence of Brownian motion. The in situ formation of fine α‐Al2O3 matrix after transformation in the seeded boehmite system results in a higher driving force for TGG and improves texture development. The combination of 3 μm templates with a seeded boehmite matrix results in extremely high texture qualities (texture fraction f = 0.97–0.99, r = 0.17) while maintaining a relatively fine grain size (5–10 μm in diameter and 1.5–3 μm in thickness). Although undoped samples can be fully textured at 1600°C, adding as little as ~0.25 wt% CaO/SiO2 dopant improves TGG kinetics and yields full texture at 1400°C.  相似文献   

13.
《Ceramics International》2020,46(13):21156-21165
To improve the thermal and mechanical properties of Al2O3/AlN composite ceramics, a novel heterogeneous precipitation coating (HPC) approach was introduced into the fabrication of Al2O3/AlN ceramics. For this approach, Al2O3 and AlN powders were coated with a layer of amorphous Y2O3, with the coated Al2O3 and AlN powders found to favor the formation of an interconnected YAG second phase along the grain boundaries. The interconnected YAG phase was designed to act as a diffusion barrier layer to minimize the detrimental interdiffusion between Al2O3 and AlN particles. Compared with samples prepared by a conventional ball-milling method, the HPC Al2O3/AlN composites exhibited less AlON formation, a higher relative density, a smaller grain size and a more homogeneous microstructure. The thermal conductivity, bending strength, fracture toughness and Weibull modulus of the HPC Al2O3/AlN composite ceramics were found to reach 34.21 ± 0.34 W m−1 K−1, 475.61 ± 21.56 MPa, 5.53 ± 0.29 MPa m1/2 and 25.61, respectively, which are much higher than those for the Al2O3 and Al2O3/AlN samples prepared by the conventional ball-milling method. These results suggest that HPC is a more effective technique for preparing Al2O3/AlN composites with enhanced thermal and mechanical properties, and is probably applicable to other composite material systems as well.  相似文献   

14.
Nanoscaled cristobalite and α‐Al2O3 powders were used as the starting materials for synthesizing mullite by solid‐state reaction. The thermal reaction of the cristobalite with α‐Al2O3 during the thermal treatment was examined. Cristobalite powder with a D50 value of 430 nm was adopted to mix with α‐Al2O3 powders with a D50 values of 230, 310, and 400 nm in a stoichiometric composition of 3Al2O3?2SiO2 (71.8 wt% α‐Al2O3 and 28.2 wt% SiO2). Samples for thermal reaction were prepared using uniaxial pressed from the three mixtures that showed various particle number ratios of SiO2/Al2O3 due to the different particle sizes of α‐Al2O3. Examinations were performed by differential thermal analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy techniques. The results showed that cristobalite particles amorphized during the thermal treatment, and then reacted with the α‐Al2O3 particle to form mullite via nucleation and growth. The amorphization temperature can be reduced by using finer‐sized α‐Al2O3 powders, thus leading to a lower temperature for mullite formation. Mullite crystals with a multidomain structure were observed in the α‐Al2O3 particle matrixes. The crystal orientation of the mullite was controlled by the α‐Al2O3 matrix, that is, [001] α‐Al2O3 → [001] mullite. These results indicate that the amorphization of cristobalite may trigger the reaction of SiO2 with α‐Al2O3, initiating the nucleation of mullite. The α‐Al2O3 particles act as the hosts for mullite formation and determine the size of the mullite particles.  相似文献   

15.
Fine-grained BaTiO3-based ceramics of different grain sizes (118–462 nm) with core–shell structures were prepared by a chemical coating method, having good dielectric properties and gentle temperature stability. The grain size effect on the dielectric properties and insulation resistivity of modified fine-grained BaTiO3 ceramics under high temperatures and electric fields were investigated. The DC bias shows a strong effect on the dielectric properties with decreasing grain size. In the finest ceramics, the absolute value of the capacitance stability factor was the smallest, indicating that the modified-BaTiO3 ceramic capacitor with smaller grains had higher reliability under the DC bias voltage. The highly accelerated lifetime test results showed that with decreasing the grain size, samples exhibited higher insulation resistance under elevated temperatures and high voltages. Impedance analysis proved that the finer-grained ceramic with core–shell structure had higher activation energy for both grain and grain boundary, whereas the proportion of ionic conductivity was lower.  相似文献   

16.
Uniform coating of nanometer‐scale BaTiO3–Dy2O3–SiO2 layers on spherical Ni particles are achieved by controlled hydrolysis of tetrabutyl titanate (TBT), hydrothermal reaction with Ba(OH)2, and co‐precipitation of tetraethylorthosilicate (TEOS) and Dy(NO3)3. The composition of the coating layer is similar to rare earth oxide‐silica–doped BaTiO3, which is the main component of dielectric layer for base metal electrode (BME) multilayer ceramic capacitors (MLCCs). After coating, the shrinkage onset temperature of Ni particles is significantly increased. After sintered to pellets, the electrode has good electrical conductivity. This electrode material has good compatibility with rare earth oxide and silica‐doped BaTiO3 dielectric materials, and could serve as promising candidate for application in the next generation BME‐MLCCs.  相似文献   

17.
The abnormal grain growth (AGG) behavior of undoped and SiO2-doped CaCu3Ti4O12 (CCTO) ceramics were investigated. With the addition of 2 wt.% SiO2, the AGG-triggering temperature decreased from 1100 to 1060 °C, and the temperature for obtaining a uniform and coarse microstructure decreased from 1140 to 1100 °C. The lowering of the AGG temperature by SiO2 addition was attributed to the formation of a CuO-SiO2-rich intergranular phase at lower temperature. The apparent dielectric permittivity of coarse SiO2-doped CCTO ceramics was ∼10 times higher than that of fine SiO2-doped CCTO ceramics at the frequency of 103–105 Hz. The doping of SiO2 to CCTO ceramics provides an efficient route of improving the dielectric properties via grain coarsening. The correlation between the microstructure and apparent permittivity suggests the presence of a barrier layer near the grain boundary.  相似文献   

18.
《Ceramics International》2020,46(12):20395-20403
To obtain excellent microwave absorption and thermal insulation properties, carbon nanowires reinforced SiO2/3Al2O3·2SiO2 composite ceramics (CNWs-SiO2/3Al2O3·2SiO2) were fabricated by catalytic chemical vapor deposition (CCVD) using C2H4 as the carbon source. The content of CNWs in SiO2/3Al2O3·2SiO2 porous ceramics can be adjusted by controlling the concentration of the catalyst precursor and the CCVD time. A higher concentration of catalyst precursor and longer CCVD time are beneficial for the growth of CNWs and for improving the electromagnetic wave (EMW) absorption properties of CNWs-SiO2/3Al2O3·2SiO2. However, CNWs are harmful to impendence matching due to the strong reflection and weak absorption when the content exceeds the threshold (30 wt%) in SiO2/3Al2O3·2SiO2 porous ceramics. CNWs are also harmful to the thermal insulation properties due to their high thermal conductivity. The results show that CNWs-SiO2/3Al2O3·2SiO2 can attain good EMW absorption and thermal insulation properties if the content of CNWs is 30 wt% when the concentration of the catalyst precursor is 3 wt% and the CCVD time is 15 min. The effective absorption bandwidth (EAB) can cover from 8.2 to 12.4 GHz (the whole X-band), and the minimum reflection coefficient (RCmin) is -31 dB at 9.1 GHz. The temperature gradient is 218 °C, which can satisfy the design requirement. Thus, the dielectric and thermal insulation properties are designable for CNWs reinforced SiO2/3Al2O3·2SiO2 porous ceramics to obtain excellent EMW absorption and thermal insulation properties.  相似文献   

19.
Nowadays, microwave dielectric substrate materials have been extensively investigated to meet the requirements of rapid development in modern communications. Among them, the composites of ceramic powder filled polytetrafluoroethylene (PTFE) have been a hot topic. However, the compatibility and connectivity between the surface of ceramics and PTFE molecular chains in the samples are usually low. Herein novel PTFE based composites with different contents of Al2Mo3O12 (20–60 wt%) modified by C14H19F13O3Si (F8261) coupling agent were designed and prepared. The coupling agent F8261 has been successfully grafted to the surface of Al2Mo3O12 powders, effectively promoting the densification and dielectric properties of the composites. As the content of the modified Al2Mo3O12 powders increases from 20 to 60 wt%, the εr value increases from 3.4 to 4.2, and tanδ almost remains constant at the beginning and increases with much more Al2Mo3O12 added. The Al2Mo3O12-PTFE composites filled with 30 wt% Al2Mo3O12 present the optimal dielectric properties of εr = 3.6 and tanδ = 0.0018 with a high density of 95.6%. In addition, the electromagnetic and multiphysic simulation of a 24 GHz substrate integrated waveguide filter on the basis of the 30 wt% Al2Mo3O12 - 70 wt% PTFE composite was carried out. It was revealed that the filter presented high stability on the electrical parameters caused by self-heating and dimension deformation due to the good microwave dielectric, thermal and mechanical properties of the substrate. These results indicate that the as-prepared 30 wt% Al2Mo3O12 - 70 wt% PTFE composite would be a promising candidate for high-performance microwave dielectric substrates.  相似文献   

20.
Al2O3/SiC nanocomposites are usually prepared by hot pressing or using high sintering temperatures, viz. 1700°C. This is due to the strong inhibiting effect of the nano-sized SiC particles on the densification of the material. Liquid phase sintering (LPS) can be used to improve densification. This work explored two eutectic additive systems, namely MnO2.SiO2 (MS) and CaO.ZnO.SiO2 (CZS). The additive content in Al2O3/5 wt% SiC nanocomposite material varied from 2 to 10 wt%. Densities of up to 99% of the theoretical value were achieved at temperatures as low as 1300°C. Characterisation of the materials by XRD, indicated the formation of secondary crystalline phases in addition to Al2O3 and SiC. SEM and TEM analysis showed the presence of a residual glassy phase in the grain boundaries, and an increase in the average grain size when compared to nanocomposites processed without LPS additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号